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— The purpose of this resgarcth 15 to compare the mirnimum distance
estimation technique with the best linear unbiased estimaticn technique
to determine which estimator provides more accurate estimates of the
underlying location and scale parameter values for a given Pareto
distribution. Two forms of the Kolmogorov, Anderson-Darling, and
Cramer-von M:ses minimum distance estimators are tested. A Monte Carlo
methodology 1s used to generate the Pareto random variates and the
resulting estimates. A mean square error comparison 1s then performed
to evaluate which estimator provides the best results. Additionally,
various sample si1zes and shape parameters are also used to determine
whether they have an influence on a given estimator’s performance.-.
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Abstract

This i1nvestigation ccmpared the minimum distance estimation
technique with the best linear unbiased estimation technique to
determine which technique provided more accurate estimates of the
location and scale parameter values when applied to the three parameter
Pareto distribution. Six distinct minimum distance estimators were
developed. Of these six, two were based on the Kolmogorov distance, two
were based on the Anderson-Darling di:-tance, and two were based on the
Cramer-von Mises distance. For a given sample size and Pareto shape
parameter, the location and scale parameters were estimated.
Additionally, varying combinations of sample sizes (6, 9, 12, 15, or 18)
and shape parameters (1.0, 2.0, 3.0, or 4.0) were tested to investigate
the affect of such changes.

A Monte Carlo methodology was used to generate the 1000 sample sets
of Pareto random variates for each sample size - shape parameter
combination with location and scale parameters both set to a value of 1.
The best linear 'nbiased estimator and the six minimum distance
estimators then provided parameter estimates based on the sample sets.
Finally, these estimates were compared using the mean square error as
the evaluation tool. The results of this i1investigation indicate that
the best linear unbiased estimation technique provided more accurate
estimates of location and scale for the three parameter Pareto

distribution than did the minimum distance estimation techniques.

v1i




A COMPARISON OF ESTIMATION TECHNIQUES FOR

THE THREE PARAMETER PARETO DISTRIBUTION

I. Introduction

Parameter estimation is an important underlying technique in

statistical analysis. Although the statistician can pearform some

analysis intuitively, estimation requires a specific method. For

. example, if a statistician 1s asked to analyze some sample data, he
i! could order 1t 1n ascending order and draw a histogram reflecting the
b

%: occurrence frequency of values within certain intervals. Further, from

the histogram's shape, he could guess the underlying population
distribution. However, he could not easily determine the parameters

(e.g. mean, standard deviation) of the population. At this point, the

statistician needs a method to estimate the true population parameters
from the sample data. The method is called the estimator, and the
approximations based on the sample are the statistics (1.e. the
estimates). Mendenhall defines an estimator as "a rule which
specifically states how one may calculate the estimate based upon
information contained 1n a sample” (23:13). Using these rules, the
statistician can estimate the parameters of a population distribution
based on sample data drawn from the population. These estimates then
summarize the properties of the population for the investigator.

One estimat:ion technique, called the best linear unbiased
estimator (BLUE), relies on a linear combination of order statistics

(10:265), Order statistics are a set of variables arranged according




to their magnitudes. For instance, ordering a set of observed random
variables (e.g. fastest times 1n an automobile race) from smallest to
largest results in a set of order statistics (24:229). The best

linear unbiased estimator (T) can be used to estimate an unknown
population parameter (8) where T 1s only dependent on the values of n
independent random variables. In addition, the estimator, T, must be
linear i1n the set of n random variables. The estimator must also
display the minimum variance among linear estimators and must be
unbiased (10:265~-266). In simple terms, unbiased means that on the
average, the value of the estimator equals the parameter being estimated
(33:197). Therefore, by combining a set of order statistics 1n a linear
fashion, one can produce estimators for the underlying population
parameters. If these estimators also possess the properties of minimum
variance and unbiasedness, then they are called best linear unbiased
estimators.

Another parameter estimation technique 1s minimum distance
estimation, introduced by Wolfowitz in the 1950s as a method which "in a
wide variety of cases, will furnish super consistent estimators even
when classical methods...fai1l to give consistent estimators* (38:9)., A
minimum distance estimator 1s consistent 1f, as the sample size
increases, the probability that the estimate approaches the true value
of the parameter also increases (33:199). The minimum distance
estimation technique 1s closely related in theory to the statistical
procedure called goodness of fit because a distance measure is the

evaluation criteria for both procedures. In goodness of fit, one tests

the sample data to 1dent:ify 1ts underlying unknown distribution. A
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goodness of fit test 1s "a test designed to compare the sample obtained
with the type of sample one would expect from the hypothesized
distribution to see 1f the hypothesized distribution function ‘fits' the
data 1n the sample® (8:189). Certain goodness of fit tests are based on
a distance measure between the sample and a hypothesized distribution
with known population parameters. Minimum distance estimation, houwever,
reverses the goodness of fit approach by assuming a probability
distribution type and then finding the values that minimize the distance
measure. These values become the estimates of the population parameters
(18:34).

Even though the minimum distance estimation technique was developed
in 1953, researchers have not extensively studied the technique until
recently. Parr and Schucany reported 1n 1979 that the method yields
“strongly consistent estimators with excellent robustness properties”
(27:5) when used to estimate the location parameter of symmetric
distributions (27:5). Robustness of an estimator 1s 1ts ability to
serve as a good estimator even when the distribution assumptions are not
strictly followed (27:3). Additionally, several Air Force Institute of
Technology (AFIT) students, under the guidance of Dr. Albert H. Moore,
have completed thesis research projects by applving the minimum distance
estimation technique to specific distributions and comparing this
technique with other estimation methods. These former students include
Maj McNeese, working with the generalized exponential power
distribution;: Capt Daniels, working with the generalized t distribution;
Capt Miller, working with the three parameter Weibull distribution; Capt

James, working with the three parameter gamma distribution; 2Lt




Bertrand, working with the four parameter beta distribution: and 2Lt
Keffer, working with the three parameter lognormal distribution.
Results have generally shown that minimum distance estimators provide
better estimates (i.e., estimates closer to the actual population
parameters) than the olher technicues used (4:9),

The literature search reveals that the capabilities of the minimum
distance estimation technique have not been compared with those of the
best linear unbiased estimator with regard to the Pareto distribution, a
distribution of considerable value. The Pareto distribution has a
variety of uses 1n the commercial sector. Johnson and Kotz identify
several Pareto distribution analysis areas, including city population
distribution, stock price fluctuation, and oil field location (16:242).
In addition to commercial users, the Air Force also uses the Pareto
distribution in a number of analysis areas: time to failire of equipment
components (89), maintenance service times (14), nuclear fallout
particies’ distribution (11), and error clusters in communications
circuits (3). In sum, the Pareto distribution proves to be a
distribution worthy of further investigation. Use of the minimum
distance estimation technique applied to the Pareto distribution offers
the researcher a chance to expand the frontier of knowledge in this

area.,

SPECIFIC PROBLEM

Resaarchers have not explored the potential of the minimum distance
estimation technique to improve upon the best linear unbiased estimation
technique as applied to the Pareto distribution. A comparison of the

techniques in a controlled environment i1s needed to evaluate which




technique performs better under given circumstances. The controlled
environment should specify the sample size and the value of the
parameters of the underlying Pareto distribution function for each

compariscn attempt.

RESEARCH QUESTION
For specified parameter values and sample sizes, which estimation
technique, minimum distance or best linear unbiased, performs better

when applied to the Pareto distribution?

GENERAL APPROACH

Monte Carlo analysis is the analytical method to be used to make
%i;, the estimation technique comparison. Monte Carlo analysis of estimation

methods consists of three steps. First, one generates random variates
from a specified Pareto distribution (i.e., a Pareto distribution with
known parameters). Second, the tuo estimation techniques are used to
obtain parameter estimates based on the random sample data from the
first step. Third, the resulting estimates are compared to Jetermine
which estimation technique provided the better paramater estimates

(4:27). The mean square error technique can be used to perform this

evaluation (4:31).

SEQUENCE OF PRESENTATION

This report will proceed with five additional chapters. The second
chapter will discuss the estimation techniques used in th:s study while

f;!; the third chapter will present the Pareto Distribution. The fourth

.
v

chapter will describe the Monte Carlo analysis methodology used to make




the estimation technique comparisons., The fifth chapter will present
the results and conclusions of the study while the sixth chapter w1ll

provide a short summary and some recommendations for future study in

this area.




1I. Estimation Techniques

This chapter will first provide a discussion on estimation in
general, some desirable properties of estimators, and the empirical
distribution as an estimator of the true distribution. Following this
discussion, the two estimation tachniques to be compared in this thesis
will be presented. First the best linear unbiased technique will be
discussed along with its inherent properties. Then the minimum distance
technique will be presented in the three distance measure forms to be

used throughout the rest of this study.

ESTIMATION

Estimation 1s part of a larger area of study called statistical
inference. The statistician makes inferences about the state of nature,
or the "way things really are" (22:187), based on data gathered from
experiments done to discover something about the state of nature
(22:187). Lindgren then narrows his discussion of statistical problems
to decision problems, eliminating the areas of experimental design and
representative data gathering.

Some statistical problems, notably in business

and 1ndustry, are decision problems, in which the

partial information about the state of nature provided

by data from experimentation is used as the basis of

making an immediate decision [22:188].
Lindgren then describes the general decision problem as consisting of “a
set or ‘space’ A of possible actions that might be taken, the individual
‘points’ of this space being the individual actions" (22:188). He

finally defines estimation problems as "those in which the action space

A 1s identical with the space of parameter values that index the family




of possible states of nature” (22:188). In this case, states of nature
cor.ld be described by the distribution function family members, each
member being defined through its own set of parameter values.

Pritsker describes the concept of parameter estimation by
presenting two supporting definitions. He first defines the
‘population’ as the set of data points consisting “of all possible
observations of a random variahle® (31:46). He then defines a ‘sample’
as being "only part of these ohservations” (31:46). A method to
summarize a set of data is "to view the data as a sample which is then
used to estimate the parameters of the parent or underlying population®
(31:46). Runyon and Haber simply define a parameter as “a summary
numerical value calculated from a population® (33:4).

Liebelt indicates that the estimation problem, defined earlier by
Lindgren, 1s difficult to solve. 1In fact, because there can be many
estimates regarding a problem, the solution is not uniqua. Therefore,
the statistician begins searching for the 'best' estimate: but, since
the criteria for a ‘best’ estimate 1s arbitrary, there cannot be an
optimal estimate to solve all problems (21:135-136). “Each problem may
require a different set of optimal criteria; the choice is aluays left
to the user of estimation theory® (21:136). So, the search always
continues for a better estimator. This thesis is a continuation of that
search.

Before we continue by listing and defining some of the agreed upon
properties of a good estimator, we must clarify the difference between
an estimator and an estimate. Mendenhall explains that an estimator is
"a rule which specifically states how one may calculate the estimate

based upon information contained i1n a sample” (23:13). However, when
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e the estimator 15 used to produce a particular value based on specified

7‘('?';".
B
x

. "

sample data, "the resulting predicted value 15 called an estimate”
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(23:13). Wine draws an analogy to describe the difference. He
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indicates the distinction between the two is the same as the difference
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between a function, f(x), and the evaluated functional value, f{(c).

“f(x) 15 a variable defined 1n some domain of x, and f{c) 1s a constant

l

corresponding to a specified value of x equal to constant c*
(37:170-171). Before a sample is drawn, we have an estimator. After
the sample 1s drawn, the estimator produces a particular value which 1s

an estimate (37:171).

ESTIMATOR PROPERTIES

The search for better estimators continues;: but, what 1s the
criteria for determining a good estimator? Certain properties of
estimators have been defined and seem to be reasonable guides for
choosing good estimators, although these criteria cannot be fully
“justified except on the basis of i1ntuition" (21:136). This section
will discuss four of these desirable properties. If an estimator is to
be used 1n repeated samplings from the same population, then
unbiasedness is a desirable property: otherwise, a biased estimator
could possibly be found which provides better parameter estimates.
Additionally, a good estimator should be consistent, efficient and
invariant. Each of the.e properties will now be described i1n more
detail.

Unbiased Estimators. The first property a good estimator to be

used 1n repeated samplings from the same population 1s unbiasadness.

Freeman defines an unbiased estimator as follows:
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E(t) = @ (2.1}
for all n and for any possible value of O [10:2291.
Wine points out that this definition "requires that the mean of the

sampling distribution of any statistic equals the parameter which the

atetala

£

statistic is supposed to estimate” (37:172). In other words, the
expected value of the statistic t equals the parameter being estimated,
where “the expected value of a random variable x with density function

f(v) is defined as

EGO = [Py #vidv (2.2)
-0
(21:85). Freeman defines the term density function as "a function
F(xi) which is connected to probability statements on the random

variable x by

p{x = x ) = flx. ) (2.3
1 i

(10:18). Looking at unbiasedness from a slightly different perspective,
Lisbelt says that unbiasedness “is desirable, for it states that in the
absenca of measurement error, and uncertainty in the estimation
procedure, the estimate becomes the true value® (21:137). Freeman adds
a final note concerning unbiased estimators. He indicates that for an
estimator to be truly unbiased. Eq (2.1) "is required to hold for all

sample sizes n" (10:223). There are cases when Eq (2.1) roughly holds

10




only for very large sample sizes. In these cases, the estimator is
merely ‘asymptotically unbiased’' (10:229).

Unbiasedness 1s an important property for an estimator to have in
repeated samplings from the same population. The reason for this
ctatemern! becomes appareni when one looks at what can nhappen if an
estimator is biased. "Any estimating process used repeatedly and which
on the average (mean) is not equal to the parameter leads to a sure
cumulation of error 1n one direction” (10:229). To avoid this
accumulation of error in one direction, the statistician seeks to find
and use unbiased estimators. However, in a single estimation situation,
unbi1asedness may not be desireable. Instead, one could seek to minimize
the mean square error of the estimate which could then result in a
better estimate.

Consistent Estimators. The second property of a good estimator 1s
that of consistency. As the sample size increases, one would want the
risk associated with the estimator to decrease. “That is, the estimator
ought to be better when 1t 1s based on twenty observations than when it
is based on two observations® (25:172). This supposition portrays the
1dea of consistency. “An estimator is consistent 1f for a large sample
there is a high probability that the estimator will be ricear the
parameter 1t 1s intended to estimate” (5:140).

A similar definition expressed by Wine uses the idea of
convergence to define a consistent estimator. An estimator, t, of the
parameter @ 1s consistent 1f, for any small numbers d and é&, "there
exists an i1nteger n” such that the probability that fit - 81 < &)
1s greater than (1-d) for all n > n’ " (37:171). This

definition i1ntroduces the idea of convergence by saying, "given any

11
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all larger sample sizes, the probability that [t] differs from the

true value 8 [by) more than & is as small as we please” (37:171).
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Therefore, the estimator, t, converges in probability to 0 (37:171).
Consistency, then, implies that as sample sizes increase, the
probability also increases that the estimator provides estimates which
more closely approximate the true value of the parameier being

estimated.

Efficient Estimators. The third desirable property of a good
il estimator is that of efficiency. Efficiency is generally used as a
measure to compare two estimators. The efficiency 1s the ratio of their

mean square errors. Mendenhall and Schezffer indicate that the mean

square error can be written as the summation of the variance and the
square of the bias of an estimator (24:267).

Since variance 1s a measure of the disparsion of the distribution
of an estimator abcut the parameter value, the statistician seeks an
estimator with small variance. By selecting an estimator with the
smaller variance, he ensures that his estimates will converge more
rapidly to the true parameter value (32:155)., Therefore, "one estimator
1s sai1d to be more efficient than another when tha variability of its
sampling distribution 1s less” (33:198).

Invariant Estimators. The final property of a good estimator is
that of invariance. Invariance 1s particularly desirable when
functional transformations must be made regarding the parameter. As

Freeman states:

12




We call a method of estimation i1nvariant under

transformation of a parameter 1f, when the method

leads to t as the estimator of 8, the method also

leads to g(t) as the estimator of g(8). We can

speak of t as an invariant estimator for a certain

class of transformations g if, when the parameter 0

1s transformed by g to g(8), the estimator t is

transformed to g(t) [19:2331,
If the statistician 15 working with an invariant estimator where
the estimate of 6 1s t, then he can conclude that his estimate for
B +k is t + k and his estimate for k8 is kt (10:233).

Thus, the property of invariance permits the transformation of a

parameter to be translated into the transformation of its estimator.

Summary. Three desirable properties of an estimator are
consistency, efficiency, and invariance. Unbiasedness is desirable when
the estimator 1s used in repeated sampling from the same population.
Unbiasedness means that, on the average, the estimator equals the
parameter being estimated. Consistency means that as the zample size
increases, the estimator will more closely approximate the true
parameter value. Eff:-1ency 1s a comparative measure between estimators
where the estimatcr with the smaller mean square error is more
efficient. Finally, invariance means that 1f a transformation operation
1s performed on a parameter, the 1dentical transformation can be
performed on the estimator resulting in the transformed estimator
becoming a valid estimator for the transformad parameter. Although
these properties are desirable, estimators generally do not possess all
of these properties. Therefore, the statisticians must find an

estimator with the properties needed for their particular applicat:ons.

13




EMPIRICAL DISTRIBUTION FUNCTION (EDF)

An empirical distribution is a distribution based solely on sample
values of a random variable. The empirical distribution can be thought
of as an estimation of the true underlying population distribution. The
empirical distribution i1s developed "by observing several values of the
random variable and constructing a graph S(x) that may be used as an
estimate of the entire unknown distribution function F(x) of the random
variable (8:59), Conover defines the empirical distribution as follous:

Let X,, X,y..., X be a random sample. The empirical

distribution func?ion S(x) is a function of x, which

equals the fraction of X.s that are less than or equai

to x for each x, - x (o [8:69).

Based on this definiticn, the graph of the empirical distribution
function, S(x), 1s a step function starting at zero. As each sample
value (ordered from lowest to highest) 1s encountered, a step of height
1/n 15 entered on the graph. This procedure continues until all the
sample values have been entered and a height of one has been reached.
"S(x) resembles a distribution function in that 1t is a nondecreasing
function that goes from zero to one in height. Houwever, S(x) 1s
empirically (from a sample) determined and therefore its name® (8:70).
The empirical distribution function is used as an estimator for the
population distribution function of the random variable (8:70).

From the empirical distirbution function, one can "compute the

expectation of the empiric random variable, E{(x). We have

n n

E(x) = 2_ x (1/n) = (1/nm) 2 _, X,
1 11 i

i=l (2.4)

which 1s just the sample mean, x (5:137). Eq (2.4) uses the
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discrete random variable form of the expected value definition.
Therefore, assuming the empirical distribution acceptably estimates the
population distribution leads to the sample mean being an acceptable

estimate for the population mean (5:138).

BEST LINEAR UNBIASED ESTIMATOR (BLUE)

Knowing what properties are desirable in an estimator still
leaves the statistician with the problem of developing an estimator.
One estimator is called the best linear unbiased estimation technique.
As was mentioned 1n Chapter I, the BLU estimator is based on order
statistics, which 1s simply an arrangement of random variables in
order of magnitude (24:229). A population parameter (8) can be
estimated by a statistic (T) which depends only on the values of n
independent random variables: xl. XZ' . e ey xn (108:2B65).

The title of this estimator indicates some of the properties that
1t possesses. Namely, the estimator must be unbiased, 'best’, and
linear. As was discussed ealier in this chapter, an unbiased
estimator has a hias term equal to zero, and, on the average over many
trials, the estimator provides estimates equal to the parameter value.
Eq 2.1 states the property mathematically. In addition to being
unbiased, the BLU estimator must be 'best’'. To be best among unbiased
estimators, the estimator must have the minimum mean square error
(10:265). The mean square error is the sum of the variance term and
the square of the bias term (24:267). Since we are dealing with an
estimator which 1s inherently unbiased (i.e., the bias term equals
zero), the mean square error simply reduces to the variance term.

Therefore, 1n this case, best i1mplies minimum variance. Finally, the
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BLU estimator must be linear. Linearity demands that we consider only

“estimators which are linear 1n the random variables x WX

R n
for 1t 1= only in comparison with other esimators within this
rastricted class that we can aluays find estimators [which are best

unbiased]” (10:266). Stated mathematically, the estimator appears as

follows:

T=e¢,x, +. .. 4c x (2.5)

uhere the coefficients (ci) mist be determined (1@:266).

In addition to the properties described above, the best linear
unbiased sstimator possesses another desirable feature, that of
invariance. Mood and Graybill indicate that BLU estimators are a subset
of least~squares estimators (25:349). Further, they state that, in
general, least square estimators do not possess the invariance property.
“There 1s one important case, however, when the invariant propsrty holds
for least~squares estimators, and this 1s the case of linear functions*
(25:35Q0). Therefore, in addition to being unbiased, and possessing

minimum variance, the BLU estimator is also i1nvariant.

MINIMUM DISTANCE (MO) ESTIMATOR

Chapter I presented a partial history and description of the
minimum distance estimation technique. The efforts of Wolfowitz
culminated 1n his 1957 paper which refined his work toward “developing
the minimum distance method for obtaining strongly consistent estimators
(i.e., estimators which converge with probability one)" (39:75), In the
paper, he emphasized that his method could be used with a variety of

distance measuring techniques (39:75). Additionally, Wolfowitz staiad
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that “1t 1s a problem of great interest to decide which, i1f any,
definition of distance yields estimators preferable in some sense*
(39:76). This thes:s will i1n part respond to this challenge, since
three distance measures will be used in the minimum distance method for
comparison against the best linear unbiased estimation method. The
three distance measures to be used are the Kolmogorov, the
Anderson-Darling, and the Cramer-von Mises discrepancy measures.
Wolfowitz finally summarizes the minimum distance method as follows:

The estimator is chosen to be such a function of the

observed chance variables that the d.f. of the observed

chance variables (when the estimator is put in place of

the parameters and distributions being estimated) 1s

‘closest' to the empiric d.f. of the observed chance

variables [39:761.

Since 1957, the minimum distance estimation technique has been
studied by many other statisticians and has been found to aisplay other
desirable estimator properties. The technique has “been considered as a
method for deriving robust estimators by Knusel (1969) and Parr and
Schucany (1980)" (28:178). Additicnally, Parr and Schucany indicate
that the method yields “strongly consistent estimators with excellent
robustness properties” (27:5) when used to estimate the location
parameter of symmetric distributions (27:5). They define robust
estimation as “efficient or nearly efficient (at a model) estimation
procedures which also perform well under moderate deviations from that
model” (27:2). They attempt to explain why the minimum distance
estimator possesses robustness properties:

It may well be ingquired as to why an estimator obtained

by minimization of a discrepancy measure which 1s useful

for goodness—of-fit purposes (and, hence, i1n many cases

extremely sensitive to outliers or general discrepancies

from the model) should be hoped to possess any desirable
‘robustness’ properties. "t turns out that, in most
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%‘ ﬁ%j cases . . . while the discrepancy measure itself may be

fairly sensitive to the presence of outliers, the value . . .
which minimizes the discrepancy . . . 1s much less so [27:5-B1.

Finally, they state that the method presents a trade-off hetween
efficiency considerations and robustness considerations (28:179).

In addition to consistency, robustness and efficiency,
investigators have revealed other attractive features of the minimum
distance estination technique. Parr and Schucany indicate that "minimum
distance estimators share an invariance property with maximum likelihood
estimators . . . Jt operates in a manner analogous to maximum likelihood
methods in simply selecting a 'best approximating distribution' from
those 1n the model" (27:9). Additionally, Parr states that the method
is very easy to implement. "Given a set of data, a parmetric model, and
a distance measure between distribution functions, all that 1s needed is
an omnibus minimization routine to compute the estimator"
(26:1207-1208). Finally, minimum distance estimators provide meaningful
results even 1f the conjectured parametric model 1s incorrect.
MD-estimation still provides the best approximation in terms of
probability urits with regard to the conjectured distribution (26:1208).
“This 1s a feature not enjoyed by other estimation methods such as the
maximum likelihood” (26:1208). Therefore, MD-estimation can be a very
useful tool for the statistician.

The minimum distance estimation technique uses a distance measure
and, for this reason, is closely linked with certain goodness-of-fit
tests. As explained by Stephens, goudness-of-fit statistics are
“based on a comparison of F(x) with the empirical distribution
function Fn(x)" (35:730). In a goodness-of-fit test, one 1s

interested 1n fitting an empirical distribution function, described
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earlier, with a fully specified (1.e., with known paramters)
distribution function. The test for whelher the fit 1s "good' 1s
normally a measure of distance vetween the two distribution curves. In
contrast, minimum distance estimation uses a parent distribution family
with certain unknown parameters. The estimates of the unknown
parameters are those parameter values which minimize the distance
measure between the empirical distribution and the parent distribution
being 1nvestigated. The three distance measures to be used in this
study are described next.

Kolmogorov D.stance. The statistic suggested by Kolmogorov in

1933 15 the largest absolute distance betueen the graphs of the
empirical distribution function, S(x), and the hypothesized
distribution function, F(xi;e) measured in the vertical direction

(8:345). Symbol:ically, the Kolmogorov distance (D) 1s given by:

D= suplF(xi;O) ~ S{x)1 (7.8)

which reads D equals “the supremum, over all x, of the absolute
value of the difference F(xl;e) - S(x) ™ (8:347). Stephens
provides a computational form for all of the distance measures to be
used 1n this study uhere he lets z, = F(xl). 1 =1,2,...4n . For

the Kolmogorov distance, the computational form is as follows:

D = maxlslgn[(l/n) -~ 21]
D = nax“_i(_n{z1 - (i-1)/nl
* -
D = max (0O ,D) (2.7)

(35:731). These computational formulae provide the maximum distance
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between the empirical distribution functioun, which is a step function,
and the conjectured distribution function, F(xi;e).

Cramer-von Mises Distance. The Cramer-von Mises statistic is

actually a member of the Cramer-von Mises family of distance measures
whi % is “based on the squared integral of the difference between the

EDF and the distribution tested:

2 ® 2
W =f {Fn(x) - F(x;8)Y B(x) dx

00 (2.8)

The function . . . [B(x)1 . . . gives a weighting to the squared
difference” (34:2). The Cramer-von Mises statistic is produced by
setting the weighting function equal to one, B(x) =1 (34:2). The
computational form of the Cramer-von Mises statistic is given by
Stephens as follous:

4

3 2
W= 2tz - (zi - 1/2m’ o+ (1/1zm 2.9)

(35:731). This formula uses the same symbology as the computational
form of the Kolmogorov distance measure.

Anderson-Darling Distance. The Anderson-Darling distance
measure is actually another member of the Cramer-von Mises family. In
this case, however, the uweighting factor is 1/{u(l - u)} uwhere
@ Cu (1 (27:4). "This weight function counteracts the fact that
the discrepancy [in Eg 2.9] betuween Fn(x) and F(x;8) is necessarily
becoming smaller 1n the tails, since both approach @ and {1 at the
extremes (34:2). Therefore, the Anderson-Darling weighting function

gives "greater 1mportance to observations in the tail than do most of
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the EDF statistics” (34:2). Stephens gives the computational form of

the Anderson-Darling statistic as follows:

7 n
A = - A 5 L, (2i - 1) [lnz, +1In(f -2 )} ¥Yn - n
1=1 i nti-i

+1 (2.19)

(35:731). Again, this computational formula uses the same symbology

used for the other two distance measures' computational formulae.
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111. Pareto Distribution

This chapter will first relate the history of the Pareto
distribution. A summary of various socio—economic and military
applications will follow this historical perspective. Then a detailed
description of the Pareto function will be presented. Finally, this
chapter will describe the best linear unbiased and the minimum distance

estimation techniques as applied specifically to the Pareto function.

HISTORY

In 1897 Vilfredo Pareto (1848-1923), an Italian-born Swiss
professor of economics, formulated an empirical law which bears his name
(16:233). Pareto’'s Law was based on his study of the distribution of

incomes in several European countries during the nineteenth century.

The mathematical results of the study were summarized as follouws:

N = fAx (3.1)

where N 1s the number of people haveing incomes equal to or greater than
income level x. A and c are parameters where c 15 sometimes referred to
as Pareto's constant or the shape parameter (16:233). Pigou summarized
Pareto's findings 1n the following staiement:

It 1s shown that, 1f x signify a given income and N
the number of persons with incomes exceeding x, and

if a curve be drawn, of which the ordinates are
logarithms of x and the ahscissae logarithms of N,
this curve, for all the countries examined, 1s
approximately a straight line, and is, furthermore,
inclined to the vertical axis at an angle, which, in
no country, differs by more than three or four degrees
from 56°. This means {(since tan 56" = 1.5) that, if
the number of i1ncomes greater than x is equa} §° N, the
number greater than mx is equal to [ N(1l/m) "7 1,
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whatever the value of m may be. Thus the scheme of income
distribution is everyuhere the same [29:6471.

The Pareto premise, then, as deduced from his mathematical findings and
stated in economic rather than mathematical terms is as follows:

Hence, what this thesis amounts to in effect is that,

on the one hand, anything that increases the national
dividend must, in general, increase also the absolute
share of the poor, and, on the other hand--and this is

the side of it that is relevant here--that it is impossible
for the absolute share of the poor to be increased by

any cause which does not at the same time increase the
national dividend as a whole . . . we cannot be confronted
with any proposal *the adoption of which would both make
the dividend larger and the absolute share of the poor
smaller, or 'vice versa' [29:6481.

Pareto felt, therefore that his law was “"universal and
inevitable--regardless of taxation and social and political conditions*
v 16:233).

Since the statement of Pareto's Law, several renowned economists
have refuted the law's sweeping applicability (16:233). In particular,
Pigou 1dentified defects in 1ts statistical basis, arguing that the
differences 1n inclination of the plotted lines were significant.
Additionally, he argues that such a generalization from an empirical
study under certain conditions (certain avenues of income such as
inheritance and personal effort) cannot justifiably be extended to all
soctal conditions (29:649-655).

The general defence of "Pareto's Lauw” as a law of even

limited necessity rapidly crumbles. His statistics

warrant no inference as to the effect on distribution of

the introduction of any cause that is not already present

1n approximately equivalent form i at least one of the

communities--and they are very limited in range--from which

these statistics are drawn. This consideration is really

fatal; and Pareto 1s driven, in effect, to abandon the

whole claim . . . [29:654-655].

Additi-nally, Champernowne 1dentifies weaknesses in the Pareto Lau.
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He i1ndicates that the use of the Pareto constant as a measure of income
distribution i1nequality between communities suffers from two problems.
Firstly, the measure only addresses income before taxation. Secondly,
the measure only applied to income distributions among the rich and
breaks down when applied to those with medium incomes (7:609).

Finally, Fisk discusses the value of the Pareto distribution
regarding 1ts ability to describe distributions of income. He states
that the "Pareto curve fits income distributions at the extremities of
the i1ncome range but provides a poor fit over the whole income range”
(12:171).

Therefore, Pareto's Law with regard to income distributions is no

longer highly touted. However, other disciplines have found application

of the Pareto distribution to be very useful.

APPLICATIONS

Socio-economic Related Applications. Although the Pareto

distribution was formulated as a reflection of i1ncome distribution, the
Pareto distribution has proven to be useful in many other areas of
investigation. Johnson and Kotz indicate the Pareto distribution can be
useful 1n describing many socio—-economic or naturally occuring
quantities. Examples include the distributions of city population
sizes, fluctuations in the stock market, and the occurrence of natural
resources. The Pareto 1s useful 1n these areas because they often
display statistical distributions with very long right tails (16:242).
Koutrouvelis listed some additional areas where the Pareto
distribution had successfully been used. These areas i1nclude: business

mortality rates, worker migration, property values and inheritance, and

e o A, Y ® o

P e WA 8. B S AR P T B e




T service times in queues (19:7),
Johnson and Kotz additionally identified the area of personal
income i1nvestigation as an area where the Pareto distribution uas

applicable (16:242). In 1982, Wong used the Pareto in his analysis of

income. He indicates that many individuals underreport their true
N incomes to avoid a portion of their tax payments. Wong shows the

applicability of the Pareto in reflecti g this underreporting phenomena

‘ (40:1).

- Militarily Related Applications. In addition to socio-economic
ii interests, the Pareto distribution has proven useful in many areas of

interest to the military. These areas include fallout mass-size

distributions, interarrival time distributions, and failure time

! 1 [

distributions. This section will address each of these areas 1in turn.

E. C. Freiling conducted a study for the U.S. Naval Radiological
Defense Laboratory concerning a comparison of distribution types for
describing “"the size distribution of particle mass in the fallout from
land~surface bursts” (11:17. In this study, he compared the lognormal
distribution with the Pareto. He determined that with the effects of
the uncertainties playing in the problem, the differences in descriptive
ability of the two distributions were trivial. He indicated that the
lognormal “"has the esthetic advantage of an observationally confirmed
theoretical basis i1in the case of airburst debris® (11:12). However, if
truncation is required, the Pareto distribution has "the practical
advantage of simplifying further calculations of particle surface
distribution® (11:12).

A Pareto description of interarrival times has played an important

part i1n two other studies, one involving interarrival times in general
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and the second i1nvolving telephone circuit error clustering. Bell,
Ahmad, Park and Lui performed the general interarrival time study
supported by a grant from the Office of Naval Research. They indicate
that interarrival time distributions are usually thick-tailed as
compared to Gaussian or Poisson processes for like distributions. They
state that the Pareto can provide a variety of tail thicknesses
depending on the value of the shape parameter employed (2:1). 1In the
telephone circuit paper, Berger and Mandelbrot propose a new model to
describe error occurrence on telephone lines. They conclude that the
Pareto distribution can well be used to approximate the distribution of
inter-error intervals.

Finally, the Pareto distribution has proven useful in life testing
and replacement policy situations. BDavis and Feldstein show the Pareto
as a competitor to the Weibull distribution with regard to time to
failure of a system since, “unlike the Weibull, it does not give rise to
infinite hazard at the origin nor hazard increasing without bound”
(9:306). Kaminsky and Nelson 1llustrate the usas of the Pareto in
developing replacement policy. The Pareto can be used to predict

component replacement times based on an accumulation of early failure

data (17:145).

PARETO FUNCTYION

The mathematical formulation of Pareto’s Law on income distribution
15 shown in Eq (3.1). This law corresponds to the following Pareto

probability density function as given by Johnson and Kotz:

P(x) = PriX ) x1 = (a/x)° a)d, c)@, x)a (3.2)
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In this equation P{(x) gives the probability that income 1s equal to or
greater than x, while a corresponds to some minimum income (165:234),
The cumulative distribution function (cdf) of X resulting from Eq (3.2)

gives the following Pareto distribution:

Fy(x) =1 - (a/m)© a)@, c)@, x)a (3.3)

(16:234). During Mandelbrot's i1nvestigation concerning the Pareto
distribution, he distinguishes between two forms of the Pareto Law: the
Strong Law of Pareto and the Weak or Asymptotic form of the Law of
Pareto. Mandelbrot's Strong Law of Pareto is of the form shown in Eq

(3.3) and 1s written as follouws:

(x/a) xla

1 - Fx(x)
=1 x{a (3.4)

Mandelbrot's Weak or Asymptotic form of the Pareto Law is written as
follous:

L= Fylx) (x/a) ¢ as x = ® (3.5)

The Weak form impliec that 1f the log of the left side of the reiation
is graphed against log x "the resulting curve should be asymptotic to a
straight line with slope equal to {-c] as x approaches infinity”

(16:245).

Grouping Pareto Distributions by Kind. There are several versions
of the Pareto cumulative distribution function. Often, these versions
are grouped according to ‘kind’. There are three labels used i1n this

type of grouping scheme: Pareto distributions of the first kind, of the
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second kind, and of the third kind.
A distribution of the form shown in Eg (3.3) is raferred to as a

Pareto distribution of the first kind (16:234). A Pareto distribution

of the second kind is written as follouws:

Fix) =1 - K/[(x + OF) (3.6)

(16:234). This form differs from the Pareto distribution of the first
kind through the addition of another quantity, C, in the denominator of
the second term on the right hand side of the equation,

In addition to the two distribution kinds above, Pareto suggested a
third law, the distribution of which Mandelbrot calls a Pareto

distribution of the third kind. The mathematical form is as follows:

h

Fix) =1 - [k.e "/(x + OF) (3.7)

2

(16:234). The Pareto distribution of the third kind degenerates to that

of the second kind when h = 0.

Grouping Pareto Distributions by Parameter Number. Perhaps a more

understandable method of grouping the various forms of the Pareto
distribution function 1s by grouping them according to the number of
parameters the form contains. However, before describing these
functions, three basic parameters will be defined.

Hastings and Peacock describe three types of parameters which
always have a physical or geometrical meaning. These three parameters
are those of location (a), scale (b) and shape (c¢). This study will use
this symbology when using these parameters. The location parameter, a,

18 “the abscissa of a location point (usually the lower or mid point) of
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the range of the variate" (15:20). The scale parameier, b, "determines
the scale of measurement of the fractile, x* (15:20). A fractile 1s a
general element within the range of the variate, X (15:5)., Finally, the
shape parameter, c, “determines the shape {(1n a sense distinct from
location and scale) of the distribution function (and other functions)
within a family of shapes associated with a specified type of variate"
(15:20). Using the normal distraibution as an example, the mean is the
location parameter because 1t specifies a kind of mid point for the
distribution. The standard deviation 1s the scale parameter becauyse it
provides a fractile measurment device for the distribution. “The normal
distribution does not have a shape parameter” (15:20). With this
background on location, scale and shape parameters, we can now proceed
with the disussion on grouping Pareto distributions according to the
number of parameters contained in the distribution expression.

The most commonly used form of the Pareto distribution 1s the two
parameter form: however, there is a more general form which uses all
three basic parameters of location (a), scale (b), and shape (c). This
section will present this more general form and show how the simpler
forms are derived from 1t. The three parameter form of the Pareto

distribution 1s written as follows:

F(x) =1 ~ [1 + (x-a)/b] © x)a (3.8)

where b8 and a)0 (20:218). As stated earlier, the notation of
Hastings and Peacock 1s used in this equation and in those that follouw.
The tuwo parameter Pareto distribution 1s the most common form of

the distribution and 1s derived from Eq (3.8) by eliminating either the
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location or the scale parameter from the equation. One way to obtain a
two parameter distribution function 1s to set the location parameter
equal to zero. For a=@ uwe obtain a Pareto distribution of the second
kind as shoun i1n Eq (3.6) where K=bc and C=b. This special case 1s
sometimes referred to as the Lomax distribution (20:218). Another
method of effectively eliminating one of the parameters 1s to set the
location parameter equal to the scale parameter. Setting a=b 1n Eq
(3.8) results 1n the usual formulation of the Pareto distribution and 1s
the Pareto distribution of the first kind as shown 1n Eg (3.3).

The simplest form of the Pareto distribution 1s the one parameter
version which can be obtained by setting both the location and the scale
parameter equal to one. Setting a=b=1 1in Eq (3.8), the following

ditribution function results:

Fix) =1 - x x)1 (3.9

This one parameter form 1s regarded as the ‘standard form' of the Pareto
distribution (16:240).

Since most of the many versions of the Pareto distribution can be
derived from the more general tkree parameter model, this thesis
investigates the three parameter distribution. This should ensure that
results of this study can be used 1n a wider variety of applications

where estimation 1s required.

PARAMETER ESTIMATION

This section describes the estimation methods used 1n this study as
applied specifically to the Pareto distribution. First the best linear

unbiased estimators are presented along with the procedure used to
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transform these estimators into a computational form. Then the minimum
distance estimation formulas will be adapted to the Pareto distribution.

Best Linear Unbiased Estimator. As was mentioned by Kulldorff and
Vannman, the general, three parameter form of the Pareto cumulative
distribution function has received little attention from statisticians
working on the development of estimators (20:218). Hence, many
estimators have been developed for special cases of the two parameter
formulation while few estimators are available for study of the more
general distribution form.

Kulldorff and Vdannman successfully derived BLU estimators for three
cases of the general Pareto distribution where the shape parameter is
aluays assumed to be greater then two. Specifically, these cases are:
scale parameter when the location and shape are known; location
parameter when the scale and shape are known: and location and scale
parameters when the shape 1s known (20:218-224). The astimators
developed for the third case are the estimators used in this study,
since only shape parameters will be explicitly specified for the Pareto
distribution being investigated. However, these estimators are useful
only when ¢>2 .

Vannman later presented the BLU estimators for the same three
cases shown above with the condition that the shape parameter 1s equal
to or less than two (36:704). Therefore, his estimators will be used
for the cases when c(Z .

BLUEs for Shape Greater Than 2. As stated earlier,

Kulldorff and VaAnnman developed BLU estimators for both the location
and scale parameters with the shape parameter known and greater than

two. From Chapter II. we recall that the BLU estimator is based on
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order statistics uhere the random variables are arranged in order of
magnitude from smallest to largest (24:229). Therefore, the elements
of the draun sample are ordered from smallest to largest to provide the
order statistics where «x { x oo (o x Here x is the

(1) - (2) (n) ’ (1

smallest valued observation and X(m is the largest valued observation
from the sample of si1ze n. Since a BLU estimator must take the form of
a linear combination of the ordered random variables, the BLU estimators
for the location and scale parameters of the Pareto distribution with
specified shape must be a linear combination of the ordered sample
observations, where the coefficients of these observations are to be
determined. In developing their BLU estimators, Kulldorff and Vannman
derived this linear relationship and determined the coefficients which

are based on the sample size and the specified shape parameter. The BLU

estimators for location, a, and scale, b, are written as follous:

>

a = x(l) - Y/l (nec-1)(nc-2) - ncD 1} {(3.18)
b = Y(nc-1) /7 [ (nc-1)(nc-2) - ncD 1
= {nc-1)Ix - al (3.11)

(1)

The authors note that i1n the speci.l case when a=b , the BLU estimator

reduces to the follouwing:

~

a = [ 1-(1/nc) x(l) (3.12)

Equations (3.10) and (3.11) both contain tuo quantities, Y and D,

which still need to be defined. Y 15 defined in terms of D and an
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additional neu term B1 , while D simply contains the new term 81' B1
15 defined 1n terms of the sample size, n, and the specified shape
parameter, c. Therefore, by computing the B1 terms, both D and Y can
be determined. With D and Y known, one can then calculate the BLU

estimators of "ocation and scale. The expressions for Y, D and B1 are

as follous:

n-1

Y = (c+l) §i=1 Bix(1) + (c—l)an(n) - Dx(l) (3.13)
n-1

D = (ctl) E._ B. + (c-1)B (3.14)
i=l i (n)

T_(n—1+1) T_(n+1-2/c)
B = i=1,2, ... ,n (3.15)

T-(n-i+l-2/c) T_(n+1)

Equations (3.108) to (3.15) are the Kulldorff and Vannman equations
(20:218-225).

To obtain the BLU estimators, we must calculate all of the Bi
values for i =1, 2, . . . , n . Eq (3.19) shows that Bi contains
four gamma functions which would require considerable computational
time; houwever, the expression can be simplified to reduce the
computational load.

Banks and Carson 1ndicate that “the gamma function can be thought
of as a generalization of the factorial notion which applies to all
positive numbers, not just integers” (1:144). They show that for any

positive real number, p, the gamma function of p 1s as follous:
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T- (p) = (p-1) T_ (p-1) (3.16)

Since T_(l) =1 , we see that 1f p 1s an integer than Eq (3.16)

reduces to (1:144):

T- {(p) = (p-D)t (3.17)

Eq (3.16) and Eq (3.17) will be used to simplify the B1 term to a more
manageable computational form. The first gamma function in the
numerator and the last gamma function i1n the denominator will aluays be
gamma functions of i1nteger values; therefore, Eq (3.17) can be used to
transform these terms to common factorial terms. Eq (3.16) will be
used on the remaining gamma function in the numerator to assist in the
reduction process. Simplification of the first tuo Bi terms (30)

wi1ll reveal a pattern which will simplify the evaluation process:

T—(n-1+1) T—(n+1-2/c)

T—(n-1+1-2/c) T_(n+1)

T—(n) T—(n+1~2/c)
T_(n-Z/c) T~(n+1)

(n-1)! (n-2/c) T—(n—Z/c)

n {(n-1%1 T-—(n-Z/c)

= {n-~ 2/c) / n = 1 - 2/¢(cn) (3.18)




Solving for B2 in a similar manner yields the following:

T_(n—2+1) T_(n+l-2/c)

T_(n-2+l-2/c) T—(n+1)

T—(n—l) T—(n+l-2/c)
T—(n-l-Z/c) T—(n+1)

(n-2)t (n-2/c) Tn(n—Z/c)

n! T—(n-l-Z/c)

(n-2)1 (n-2/¢c) (n-1-2/c) T—(n-l-Zlc)

n (n-1) (n-2)¢ T—(n-l-Z/c)

(n~- 2/c) {n -1 - 2/c)

ni{n- 1)
= [t -2/M{en) 1 11 - 2/ctn-1) 1 (3.19)
Equations (3.18) and (3.19" reveal the following pattern for the Bn'

Bn = (1 - 2/cn] (1 - Z/c(n-1)] . . . 01 - 2/c(])] (3.20)

The following notation will allow even further simplification of the B

value computations:
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Let t, = 2/ctn) , t_, = 2/c¢c(n-1) , . . ., t = 2/c(l)
1 2 n

Lat ul =1 - tl , uz =1 - tz s v e ey un =1 - tn .

Then B1 = uy B2 = ulu2 s e e ey Bn = uluz...un .

And in general, the computational form 1s as follouws:

1
B. = TI u. (3.21)
i i

i=1

I §

where uj =1 - tj and tj = 2/c¢{n-j+1) for j =1, 2,
(30). Equipped with these relations, we can now write the

follouwing recursive relationship which will allow simpler calculations

as recommended by Vannman (36:7@5):
Bi = {1 - 2/ctn-i+1)] Bi—l i =1,2,...,n (3.22)

With these relationships available, the programming of these

calculations will be much simpler.

BLUEs for Shape Equal to or Less Than 2. Vannman indicates

that the variance of the Pareto distribution does not exist when the
shape parameter, c, 1s equal to or less than Z; therefore, the above
formulas for BLU estimators of location and scale do not apply. He
further states, however, that 1f only the first k order statistics are
used in the estimator, uwuhere Z ( k ( (n+l - 2/c) , then the var:ance
of the estimator does exist, with the added condition that the shape
parameter satisfies the following relationship: 2/n( c (2 . He
indicates that the most efficient estimator is obtained by basing the

estimator on the first k order statistics where k = n - {2/¢c]l. In

this equation the bracketed fraction implies that only the integer
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portion of the fraction 1s used 1n the calculation (36:705-7@7). The
formulas for the location and scale parameters based on the first k

order statistics are as follous (36:707):

ak = x(l) - bk/(nc—l) (3.23)
and
k-1
b = (1/U ) { (ct+1) 2 B, x,.
k k . i (i)
i=1
+ [ (n-k+l)c - 1 1 Bk X (K)
-[ (nc-1)/(nc) 1 {nc - 2 - Uk) X(1) } (3.24)
where
(nc-2) (nc-c-2) - ncl {(n-k)c - 2 ]Bk
U =
k (nc-1) (c+2) (3.25)

Again, Equations (3.23) and (3.24) can only be used uwhere k represents
the first k order statistics and where k { n + 1 - 2/c . To obtain
the most efficient BLU estimator, Vannman i1ndicates that k should
additionally staisfy the follouwing: & = n - [2/¢c] . He further states
that in the case where Z/c is already an integer value, then eq (3.24)

simplifies to the following (36:7@7):

(ctl) (c+Z) (nc-1)

n-2/c
b = (nc-2) (ne-c-2) (izl B1 Xeiy " {(nc-2)/(c+2)1 x(l))

(3.26)

Eq (3.26) can then be entered into Eq (3.23) to obtain the BLU estimator
for location. However, to use eqg (3.26), the simplified version of the

BLU estimator of the scale parameter, four conditions must exist:




1) The shape parameter, c, must be specified

2) 2/n{c(2

3) 2/c 1s an 1integer

4) 2 (k =n- 2/c

Finally, Vannman notes tuwo simplified expressions for Bi when
the shape parameter equals 1 or 2. He indicates that if c =1 ,
then Bi = (1 -i/m) LY - (i-1Y/nnl. If c =2 , then Bi =1 -i/n
(36:705). The computer program verification and validation phase
of this research revealed that Vannman's simplified expression for B
when ¢ =1 was incorrect in the published reference. By setting
c =1 and simplifying Eq (3.15), the error in Vannman’'s published
formula was found. To generate correct B values with ¢ =1 ,
Vannman's bracketed term [ 1 - (i-1)/n 1 must be changed to
[ 1 - i/{n-1) 1. These simplified expressions will be valuable in the
computer programming phase of this study, since B values must be
calculated to determine the BLU estimates.

Minimum Distance Estimator. The general computational forms of

the three distance measures used i1n this study are presented in Chapter
II and are reflected i1n equations (Z2.7), (2.9) and (2.19). To apply
these measures using a Pareto distribution, we simply substitute our
hypothesized Pareto distribution function, Pl, for the z, value
currently shoun in these equations, where the starting point for the
estimates of location and scale will be the BLU estimates. This

hypothesized Pareto cdf can be written as follous:

;a,b,e) = 1 - [+ (x - ayby € (3.27)

P : F(x(x (1)

)
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The minimization routine, ZXMIN, from the the International Mathematical
Statistics Library (IMSL) will then alter the values of location and
scale to obtain the minimum distance measure values. These altered
estimates for location and scale then become the minimum distance
estimates for that particular distance measure. The procedural details

are covered in more depth in the following chapter.
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IV. Monte Carlo Analysis

This chapter will describe the specific analysis tool used i1n this
study to compare the best linear unbiased and the minimum distance

estimation techniques. The tool 1s called Monte Carlo analysis.

Following a general discussion of the Monte Carlo method, the specific

ii application of the method in this study will be describad. This

o

‘

application description will present the three step process of Monte

LasaLibeiy
N [l
LY

Carlo analysis along with the detailed procedures involved within each

step.

MONTE CARLQ METHOD

The Monte Carlo method, or the method of statistical trials (6:1),
falls within the realm of experimental mathematics. Hammersley and
Handscomb indicate that the essential difference between theoretical and
experimental mathematicians "is that theoreticians deduce conclusions
from postulates, whereas experimentalists infer conclusions from
observations” (13:1). Monte Carlo analysis 1s a member of the
experimental mathematics branch since it deals with mathematical
experiments on random numbers (13:2). A further explanc’ion of the
Monte Carlo method 1s provided by Schreider:

The Monte Carlo methcd (or the method of statistical

trials) consists of solving various problems of

computational mathematics by means of construction

of some random process for each such problem, with

the parameters of the process equal to the required

quantities of the problem. These quantities are then

determined approximately by means of observations of

the random process and the computation of 1ts statistical

characteristics, which are approximately equal to the
required parameters [(6:11].
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N This description of the Monte Carlo method reflects how well suited the
method 1s for this particular study, since the description mirrors the

process used to compare the two estimation techniques.

MONTE CARLO STEPS AND PROCEDURES

This study uses a three step Monte Carlo process to compare best
linear unhiased estimation with minimum distance estimation (using three
distinct distance measures) as applied to the Pareto distribution.
First, one generates random variates from a specified Pareto
distribution (1.e., a Pareto distribution with known parameters).

Second, the two estimation techniques are used to obtain parameter

estimates based on the random sample data from the first step. Thard,

RN R
. et

the resulting estimates are compared to determine which estimation

technique provided the better parameter estimates (4:27).

Step 1: Data Generation. Using the Monte Carlo technique, we
generate our own random data using the random number generator of the
VAX 11/785 (UMS) computer system located at the Air Force Instiiute of
Technology, Wright-Patterson Air Force Base, Ohio. A random number
generator generates random numbers uniformily distributed on [0,1]
(1:293). Parr stated that there were four i1tems required to perform a
minimum distance estimation: a set of data, a parametric model, a
distance measure, and a minimization routine (26:1207-1208). The data
generation step supplies the first two 1tems by generating the data
based on a specified parametric model, the Pareto distribution.

In the first step, the researcher generates the ranaoom sample data
needed to create the controlled environment, using different parameter

values for each data set. To evaluate the effect of sample size on the
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estimators and ensure validity, sample sizes (n) of 6, 9, 12, 15, and 18
are used. Additionally, shape parameters (c) of 1.0, 2.0, 3.9, and 4.0
are used with the location parameter (a) set to 1 and the scale
parameter (b) set to 1 for each sample size resulting in 20 t->tal data
sets. The random sample data required for the study are random variates
from a specified Pareto distribution. Previous thesis students had used
distributions for which computer programs were already available to
cenerate random variates using subroutines from the International
Mathematical Statistics Library (IMSL) (4:27; 18:43). However, IMSL
does not contain a similar subroutine for the Pareto distribution.
Therefore, the random variate relationship was derived using the inverse
transform technique (1:294-295) on the general three parameter Pareto
distribution function shown i1n Eq (3.8) with location parameter of {1 and
scale parameter of 1. The derivation of the Pareto random variate
relat:onship begins by substituting a=1 and b={ into Eq (3.8) which

yields the following:

F(x) = 1 - (1/x)€ (4.1)

Letting R be a random number between ® and | and letiing X be the random
variate, we have:

R=1-(1/%)° (4.2)

Solving for X yields the Pareto random variate relationship:

X = ciprt’e (4.3)

For each of the 20 data sets, 1000 samples are generated where each
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data set 1s characterized by a unique sample size (n = &, 9, 12, 15, or
18) and shape parameter (c = 1.0, 2.0, 3.0, or 4.0) with location
parameter and scale parameter set equal to 1. Therefore, a total of
20000 random sample sets are generated, since 20 separate data sets are
required to reflect all the combinations of sample sizes and shape
parameters. Previous studies also used 1000 samples to avaluate the
estimation techniques (4:28; 18:43). A computer subroutine, PARVAR, was
written to generate the 20080 random sample sets from the three
parameter Pareto distribution. The IMSL subroutine USRTA was used on
each sample set of size n to arrange the random variates from smallest
to largest. The output was then used by each of the estimation
tachnique subroutines.

Step 2: Estimate Computation. The second step of the Monte Carlo
process 15 to use both of the estimation techniques, best linear
unbiased and minimum distance estimation, to compute estimates based on
the random sample data sets. We first present the procedures used for
finding the best linear unbiased estimates. This presentation 1s
followed by the minimum distance estimation procedures.

Using each of the data sets along with the best linear unbiased
estimators for the location and scale narameters of the Pareto
distribution function for each data set, one obtains 1000 best linear
unbiasad estimates for the parameters of each particular Pareto
distribution sampled. The computer subroutines written to perform this
task were titled BLC6TZ2 and BLCLE2. These subroutines were eventually
run against all 20 data groups.

The minimum distance estimation process develops six minimum

distance estimators using the ‘BLUE’ estimates of location and scale
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for each sample of size n as the starting values for the hypothesized
distribution function, F(Xl;;,G,C), which 1n our computational notation
15 equal to z . The IMSL minimization subroutine, ZXMIN, then

minimizes the computational form of each distance measure in turn. For
instance, by varying the value of the location parameter while holding
the scale equal to the BLUE for scale, ZXMIN finds the value of the
location parameter which minimizes the distance between the hypothesized
distribution and the empirical distribution function for each sample of
size n. This new value for the location parameter 1s the single
parameter minimum distance estimate of the location parameter.
Alternatively, by holding the location parameter equal to the BLUE for
location, ZXMIN uses the same procedures to obtain a single parameter
minimum distance estimate for the scale parameter. Finally, ZXMIN finds
what we call a double parameter minimum distance estimate by varying
both the location and the scale parameters 1n the same minimization
calculation. The result of a double parameter minimum distance estimate
run 1s a simultaneous estimate of both location and scale. The two
single parameter minimization techniques (1.e. one for location and one
for scale) along with the double parameter minimization technique are
applied to each of the three distance measures, resulting in 12 minimum
distance estimates for each data set generated. The computer
subroutines written to perform these tasks are KSMD, KSAMD, and KSBMD
for the Kolmogorov distance measure. For the Cramer-von Mises distance
measure, the subroutines CVMD, CVAMD, and CVBMD were written. Finally,
for the Anderson-Darling distance measure, the subroutines written ar.
entitled ADMD, ADBMD, ADABMD. The source code for these subroutines 1s

located 1n Appendix B. Each of these subroutines i1s run against all 20
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Step 3: Estimate Comparison. The third and finz] step in the

Monte Carlo analysis 1s estimate comparison. In this step, the mean
square error (MSE) approach 1is used to evaluate which estimation
technique provides more accurate parameter estimates (4:31).

Many statisticians support the use of MSE as a good evaluation
for comparing estimators. Mendenhall and Scheaffer state that
MSE is the expected value of (8 - 9)2. They further indicate that the
mean square error can be written as the suismation of the variance and
the square of the bias of an estimator (24:267). Since uwe seek
unbiased and relatively efficient estimators, small MSE values should
provide a good i1ndication of estimators possessing these tuo desirable
properties and should therefore provide a good estimator comparison
tool. Mendenhall further describes a method for evaluating an estimator
which parallels the method used i1n this study:

Thus the goodness of a particular estimator could be

evaluated by testing it by repeatedly sampling a very

large number of times from a population where the

parameters were known and obtaining a distribution of

estimates about the true value of the parameter. This

distribution of estimates would be referred to as the

‘distribution of the estimator’ . . . Those estimators

possessing distributions that grouped most closely about

the parameter would be regarded as 'hest’' . . . Hence,

the relative ‘goodness’ of estimators may be evaluated by

comparing their biases and their var:iances [23:14-158].
Since the MSE is a function of both the variance and the bias, an MSE
comparison should reflect the goodness of the estimators considered, as
suggested by Mendenhall. Houever, Mood and Graybill warn that "“except
in trivial cases, there 1s no estimator whose mean-squared error 15 a
mimimum for all values of 8" (25:167). That i1s, for a given 6 value,

estimator A may produce the smallest MSE, while for another value of

the parameter, estimator B may provide the smallest MSE. Houever, Mood
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and Graybill do coacede that the MSE does provide a useful guide for
estimator comparisons In fact, they do end up using the MSE as their
guide in searching for minimum risk estimators. Finally, Liebelt
provides two reasons why minimizirg the average mean square error 15 a
credible criteria for evaluating good estimators:

First, 1f the mean square error 1s zero or near zero

then the dispersion of the estimate from the true value

1s also zero or near zerc. Secondly, the choice of

minimizing the average mean square error is an easy

mathematical procedure, whereas other choices often

lead to i1nsurmountable analyvical difficulty [Z1:137].

Therefores, many authors support the use of comparative mean square
errors as a valid technique for evaluating the relative worth of
estimators, where the estimator with the smallest MSE 15 considered the
*best’ estimator for a given set of parameter values.

The term mean square error is very descriptive of the procedures
used durin: the evaluation. The ‘error' from each of the 100@ samples of
s1ze n 1s found by subtracting the estimated parameter from the true
population parameter. This error term 1s then squared, giving the
‘square error.' Finally, the mean of the 1000 ‘square error’ terms is
found by summing these terms and dividing by 1000, tnereby producing a
‘mean square error' (4:32). The estimator providing the smallast MSE,
therefore, 1s the best estimation technique to use. The formula for
calculating the MSE 1s as follows:

2

L3 EN ~
MSE(®) = [ i=1(91 - 8)"1/N (4.4)

'y

"where 8 1s the true value of the parameter, 81 1s the 1th estimate,

and N 1s the number of times the estimation 1s performed--in this
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analysis, N = 1000 * (4:32). In this case, the parameters heing
evaluated are the location and scale parameters. Of course, the
computer was used to perform the MSE calculations because of the large
number of calculations involved. The MSE calculations are embedded in
the main program, BLUMD, thereby eliminating the need to store large
numbers of variate and estimate values. The MSE calculations result in
seven estimation error 1ndicators for the location parameter and seven
estimation error indicators for the scale parameter for every specified
Pareto distribution considered. The seven estimation error indicators
for each parameter correspond to the seven estimation techniques used:
the best linear unbiased estimator and the six minimum distance
estimators. The estimation technique which reflects the smallest MSE 1s
considered the best parameter estimation t- “nique for that specified
Pareto distribut:ion.

The subroutines described above 1n the three step Monte Carlo
analysis were merge:d 1nto a computer program (BLUMD) which output the
MSE values forr the estimation techniques being compared. The scurce
code 15 found 1n Appendix B. The logical steps or pseudocode for the
program 1s listed i1n Figure 1.

Each of the subroutines in BLUMD were validated and verified
individually by comparison with sample hand calculations. Additionally,
the subroutines were again validated and verified as they were added to
the parent program. It was this validation and verification procedure
which first indicated there were possible problems with Vannman's
published B value formula which supported the generation of the best
linear unbiased estimates for c=1. Chapter 3 i1dentifies the published

version of the B value formula and the correction required.

- e e E————
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1. Generate a sample set of n random variates trom a Pareto
distribution with location and scale equal to 1 and shape equal to
c.

2. Order sample from smallest to largest.

3. Calculate BLU estimates for location and scale based on sample
size n.

4. Calculate the Kolmogorov minimum distance estimates of
location and scale based on the sample.

5. Calculate the Cramer-von Mises minimum distance estimates of
location and scale based on the sample.

6. Calculate the Anderson-Darling minimum distance estimates of
location and scale based on the sample.

;i} 7. Find the error from the true value of 1| for each estimate and
square this error. Save a running sum of the squared error terms
for each es.imate.

8. Repeat steps 1-7 1000 times for a given n.

9. Divide all eight squared error totals by 1080 to give the
MSE’s.

10. Output the 14 MSE's for the given n and ¢ values.

11. Repeat steps 1-10 using a different sample size, n, but the
same c, until all values of n have been used.

12. Repeat steps 1-11 using a new shape value, c, until all
values of c have been used.

Figure 1. Pseudocode for Program BLUMD
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V. Results, Analysis and Conclusaions

Figure | 1n Chapter IV. described the pseudocode of the computer
program used to generate each Pareto random variate sample set,
calculate the best linear unbiased and the six new m:nimum distance
estimates for each parameter based on each sample set, and finally
determine the mean square error for each estimate. This chapter
presents the results of the computer program runs along with an analysis
of these results. Appendix A contains the results of the study in table
format, where a separate table of Mean Square Error values is presented
for each unique shape parameter--sample size combination 1nvestigated.
Since there were 20 possible combinations of shapes and sample sizes,
Appendix A contains 20 separate tahbles. Finally, this chapter presents

the conclusions drawn frem the analysis of these results.

RESULTS

Appendi1x A contains the tabies of mean square errors (MSEs) for
each estimation technique used 1n the research effort, given a
particular shape parameter and sample size. Since MSE 1s the eavaluation
tool used to determine which estimation technique was best, these tables
were used to make the estimator comparisons. The estimator with the
smallest MSE value 1s considered the best estimator of those

investigated.
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TABLE II

Mean square error for ¢ =1 and n =9

i LOCATION (a) v SCALE (b) i
il i i
i i i i i
i1 ESTIMATION | it ESTIMATION ! i
i1 TECHNIQUE i MSE {1 TECHNIQUE H MSE H
i i 1 i i
i ] i | i
il BLUE i 2.1462625E-02 ! BLUE J 0.4062695 t
i ADMD1 i 2.3038462E-02 11 CuMD1 i 0.5638790 i
] CUMD1 i 2.4678135E-02 |! ADMD1 ] @2.5760345 i
i KSMD1 i 4.0461082E-02 1i! KSMD1 i 0.5824831 i
P CUMD2 i 4.2301375E-02 1! KSMD2 i 0.6407889 i
i KSMO2 i 4.3836664E-02 || cump2 i 0.6685479 i
H ADMD2 i 65.1653644E-02 || ADMD2 ' 0.8271174 H

Figure 2. Sample Table of Mean Square Errors

Figure 2 shows a sample of the table format. Each table contains
two sections. The left section contains the MSEs based upon estimation
of the location parameter while the right section contains the MSEs
hased upon estimation of the scale parameter. This format permits an
easy comparison of the BLUE MSE value for each parameter with the MSE
value of each of the minimum distance estimation techniques used. The
smallest MSE value 1n each table section then reflects the best
estimation technique to use for that parameter, under the stated shape
parameter and sample size conditions. To further simplify the reading
of the tables, the estimation techniques are ordersd in each table from
smailest MSE value to largest. Therefore, the technique which generated

the smallest MSE result 1s listed first 1n each column and 1s also the
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best estimation technique to use for estimating that parameter under the
specified conditions.

Each section of the table contains a list of the estimation
techniques that were applied to the 1000 sample sets of ordered Pareto
random variates. BLUE refers to the best linear unbiased estimation
technique. Each of the other techniques was compared against this
technique to determine which technique provided the better astimate.
ADMD! refers to the Anderson-Darling minimum diatance estimation
technique. Additionally, the 1| implies that only one parameter was
permitted to vary while the other parameter was held constant (equal to
the BLU estimate). For example, ADMD! under the location parameter
section of the table implies that the location parameter was varied
while the scale parameter was held equal to the BLU estimate for that
sample size and shape parameter. CUMD! and KSMD! refer to the
Cramer-von Mises and the Kolmogorov minimum distance eastimation
techniques respectively. Again, the 1 implies that only one parametar
was allowed to vary in finding the minimum distance value, while the
other parameter was held equal to the BLU estimate. ADMDZ again refers
to the use of the Anderson-Darling distance measure i1n the minimization
process. However, in this case, both the location and scale parameters
were permitted to vary simultaneously 1n determining the minimum
distance measure. The 2 1n the notation indicates that two parameters
were allowed to vary during the minimization process. CUMD2 and KSMD2
refer to the use of the Cramer-von Mises and Kolmogorov distance
measures respectively. Again, the 2 in the notation implies that two

parameters (1.e., location and scale) were permitted to vary during the
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minimization routine. Therefore, in this report, ADMDL, CYUMD1 and KSMD1
are called single parameter minimum distance estimation techniques while
ADMD2, CUMD2 and KSMD2 are called double parameter minimum distance

estimation techniques.

ANALYSIS

Regarding the location parameter, the BLU estimator provided the
smallest MSE values in all cases except the case where the shape
parameter equalled 1 (¢ = 1) and the sample size equalled 6 (n = §). In
this case, the single parameter Anderson-Darling minimum distance
estimator (ADMD1) provided the smallest MSE. Based on this analysis,
the results showed that, overall, the best linear unbirased estimator
performed better than any of the minimum distance estimators evaluated.

The results of the research regarding estimation of the scale
parameter was even more pronounced. Regardless of the shape parameter
(c=1, 2, 3 or 4) or sample size (n =6, 9, 12, 15, or 18) used 1n this
study, the BLUE provided the smallest MSE in every case and 1s therefore
ranked as the best of the estimation techniques investigated. None of
the minimum distance estimation techniques provided better MSE values in
any instance. Therefore, investigators should feel comfortable using
the BLUE as an instrument of estimation when the underlying population
distribution 1s the Pareto.

Additionally, some observationc were made regarding the minimum
distance estimation techniques that were applied in this study and how
they performed against each other. Performance of the minimum distance

astimators on both location and scale were addressed.
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For the location parameter, the single parameter Anderson-Darling
minimum distance estimator (ADMD1) provided the smallest MSE values in
every case among the minimum distance estimators tested. ADMD1l was
therefore considered the best minimum distance estimator of location
among those investigated.

One concern this researcher had regarding the minimum distance
estimation technique was whether to let both the location and scale
parameters vary (double parameter estimator) to achieve the minimum
distance measure or to permit only one of the parameters to vary (single
parameter estimator) while holding the other as a constant, equal to the
BLUE for that parameter. For the location parameter, the results show
that the single parameter minimum distance estimator out-performed 1ts
double parameter counterpart in every case except one. When c¢=1 and
n=6 , KSMD2 provided a smaller MSE than did KSMD1. In all other cases,
however, the single parameter minimum distance estimator provided better
results. Therefore, the single parameter estimation technigque performed
better than its double parameter counterpart when the Kolmogorov,
Cramer-von Mises, or Anderson-Darling distance measure was minimized for
location parameter estimation of the Pareto.

For the scale parameter, the i1nferences drawn required a bit more
scrutiny as there was no single best minimum distance estimator. There
was a shift 1n performance when a shape parameter ¢ > 1 was specified.
For © =1 , CUMD! was the best overall estimator, since 1t provided the
smallest MSE in four of the five cases investigated. The exception
occurred again in the case c=1 and n=6 , where the KSMD1 estimator

gave the smallest MSE: however, CUMD1l did provide the next smallest MSE.
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Therefore, CUMDL was selected as the best minimum distance estimator for
scale when the shape was specified as c¢c =1 . In the other 15 cases
investigated, KSMD2 provided the smallest MSE values 1in 12 i1nstances.
The three exceptions were: c¢=2 and n= where KSMDO1 was best, c¢=2
and n=15 where CUMDI was best, and c¢=3 and n=i{5 where ADMD! was
best. Overall, CUMD! performed best for c=1 and KSMD2 performed best
for c¢=2, 3 or 4 among the minimum distance estimators for scale
investigated.

Regarding use of the single parameter versus the double parameter
minimum distance estimation technique for scale, no clear rule can be
stated, although there was a definite trend shown i1n the results. For
c=l , the single parameter technique clearly dominated since in all but
one case, the single parameter estimator provided smaller MSE values
than the corresponding double parameter estimator. The only exception
was for c¢=1 and n=12 where KSMDZ performed better than KSMD}
(perhaps an indication of the improved performance this estimator would
show for larger ¢ values). However, as the shape parameter value
increased from 1| to 4, the performances of the double paramater
techniques improved. In fact for c¢=4 , the double parameter estimation
techniques performed better than their single parameter counterparts in
all but one case: for c¢=4 and n=18, ADMDLl out-performed ADMD2.
Therefore, for c=1 , the single parameter minimum distance astimators
performed better overall than their double parameter counterparts. For
c=4 , the reverse was true. For shape values of 2 and 3, the
performance was mixed, but the trend toward improved double parame.er

performance with the increasing value of shape was still evident.
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The aobservations made regarding the minimum distance estimators,

although lengthy, should not overshadow the primary conclusion drauwn
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from this research. The best linear unbiased estimators provided ithe
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best estimates of hoth location and scale when compared with any of the

minimum distance estimators based upon the mean sgquare error criteria.
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VI. Summary and Recommendations

This chapter presents a summary of the research effort, restating
the objective of the study, the methodology used, and the major
conclusions drawn from the experimental results. Further, three

recommendations for further study in this area are presented.

SUMMARY

The purpose of this research was to compare the minimum distance
estiration technique with the best linesar unbiased estimation technique
to determine which estimator provided more accurate estimates of the
underlying location and scale parameter values for a given three
parameter Pareto distribution with specified shape parameter. The
Kolmogorov, Cramer-von Mises, and Anderson-Darling distance measures
were used to develop the minimum distance estimators. For each of these
distance measures, two minimum distance estimators were developed. The
first minimum distance estimator varied only a single parameter value to
achieve the distance measure minimization. This estimator was called
the single parameter minimum distance estimator. The second minimum
distance estimator allowed both the location and scale parameters to
vary while achieving the minimum distance measure. These estimators
were called the double parameter minimum distance estimators. These
minimum distance estimators were compared against the best linear
unbirased estimators which had been previously developed by Kulldorff and
Vannman for shape greater than 2, and by Vannman for shape equal to or

less than 2. Manual derivation of the B values formula for the special
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case, c¢=1 , revealed an error in the published version of the formula,
as explained in Chapter III. of this report.

A Monte Carlo methodology was used to generate the estimates for
each of the estimation technigques investigated. A sample of Pareto
random variates was generated from a completely specified three
parameter Pareto distribution with location and scale equal to one and
the shape parameter 1teratively specified as one, two, three, or four.
The estimates of location and scale were then generated based on each of
the estimation techniques. This process was repeated 1000 times for
each combination of shape parameter (c = 1, 2, 3, or 4) and Pareto
random variate sample si1ze (n = 6, 9, 12, 15, or 18). This Monte Carlo
process resulted in 1000 estimates of both location and scale for each
astimation technique used.

The criteria for determining which estimation technique performed
best was bascd on the resulting mean square error calculation for each
group of 1000 estimates. The estimation technique which yielded the
smallest mean square error was selected as the best performing
estimator.

The results of this research clearly indicated that the best linear
unbiased estimator provided smaller mean square eror terms than any of
the minimum distance estimation techniques investigated. Therefore, the
best linear unbiased estimation technique was ranked as the best
estimation technique among those tested.

Regarding the minimum distance estimators, a comparison of the
single versus double parameter techniques was made. For estimation of

the location parameter, the single parameter estimation technique
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performed better than the double parameter estimation technique. For
the scale parame.er estimation, the conclusion was not as clear. A
trend was i1dentified as the value of the specified shape parametier
increased from 1 to 4. For ¢ =1 , the single parameter estimators
performed better: however, as the shape parameter increased, the
performance of the double parameter astimators improved until at ¢ = %,
the double parameter estimators performed better than their single

parameter counterparts.

RECOMMENDATIONS

Three recommended areas for further study in this research area are
now offered. First, a study similar to this one can be performed, again
based upon a specified three parameter Pareto distribution, but using
minimum distance estimators based on different distance measures.
Examples of such distance measures include the Kuiper distance and the
Watson distance referenced by M. A. Stephens (35:731). Second, a study
involving a comparison of a set of minimum distance estimators against
the bast linear unbiased estimators based on the more commonly used two
parameter form of the Pareto distribution could prove fruitful. Third,
a researcher could perform a comparison study involving the maximum
likelihood estimator and a set of minimum distance estimators, again
based upon the common two parameter form of the Pareto distribution
function. Any of these areas would provide fertile ground for the

investigative statistical ress=archer.
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The following notation 1s used in this appendix:

Term Notation
Best Linear Unbiased Estimator BLUE
Anderson-Darling Minimum Distance Estimator ADMD1

(Only one varying parameter)

Cramer-von Mises Minimum Distance Estimator CuUMD1
(Only one varying parameter)

. Kolmogorov Minimum Distance Estimator KSMD1
e (Only one varying parameter)
‘J’ Y ying p

Anderson-Darling Minimum Distance Estimator ADMD2

(Two varying parameters)

Cramer-von Mises Minimum Distance Estimaior CuMD2
(Two varying parameters)

Kolmogorov Minimum Distance Estimator KSMD2
(Two varying parameters)

Location Parameater a
Scale Parameter b
Shape Parameter c
Sample Size n
Mean Square Error MSE

The Monte Carlo analysis involves 1000 i1terations for the
generation of each table. The true value of the location parameter 1s
one and the true value of the scale parameter 1s one for all of the

— tables.
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TABLE I

Mean square error for

SCALE (b)

LOCATION (a)

ESTIMATION
TECHNIQUE

ESTIMATION

MSE

1
3

MSE

TECHNIQUE

0.9352127
1.460597
1.523946
1.589061

BLUE
KSMD1
CUMD1
ADMD L
KSMD2
cuMD2
ADMDZ

ADMD 1 ! 6.1960317E-02 i
CUMD1

BLUE
CymMb2

6.4573184E-02 1
6.7886792E-02

9.8166950E-02

1.657526
1.667902
3.635443

i 1.182953 E-01

KSMD2
KSMD1

1.2137F4 E-0OL 11}

4.874095 £-01

ADMD2

TABLE II

and

[+]

Mean squara error for

SCALE (b)

LOCATION (a)

ESTIMATION
TECHNIQUE

ESTIMATION
TECHNIQUE

MSE

MSE

t BLUE i 0.4062696

2.1462625E-02
2.3038462E-02
2.4678135E-02
4.0461082E-02
4.2301375E-02
4.3836664E~-02

6

BLUE

ADYD1L
CuMD!L
KSMD1
CumMb2
KSMD2
ADMD2

0.5638790
0.5760345
©8.5824831

CUMD1
ADMD1
KSMD1
KSMD2
CUMD2
ADIHD2

()
L]

[}
]

2.6407889
0.6685479

8.8771174

. 1653644E-02
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3 TABLE III

Mean square error for c =1 and n =12

- ¥ i ¥
¥ LOCAT:ON (a) ¥ SCALE (b) ¥

T i 1 | T

_ ti ESTIMATION ! it ESTIMATION ! ¥
_ {1 TECHNIQUE ! MSE i1 TECHNIQUE ! MSE '

; ¥ : ¥ : ¥
¥ BLUE ! 1.0628480E-02 ! BLUE i 0.3627600 !

H ADMD1 | 1.1631799E-02 |1 CUMD1 | 0.4933714 i

» ' cuUMD1 i 1.317587SE-02 i1 ADMD1 | 0.5042603  i!
“ H cuMD2 | 2.2465685E-02 !! KSMD2 | 0.5136845 1!
, ¥ KSMD1 { 2.3550959E-02 ! KSMD1 | 0.5234504 1!
' KSMD2 | 2.4744846E-02 !| CUMD2 ! 0.5422385 !

¥ ADMD2 | 3.2977652E-02 !! ADMD2 ! 0.6380025 !

{d : i : ¥

TABLE IV

Mean square error for c =1 and n =15

i LOCATION (a. t SCALE (b) i
i1 ESTIMATION d i1 ESTIMATION g i
11 TECHNIQUE i MSE 11 TECHNIQUE ] MSE b
P BLUE i 7.4139438E~-03 1! BLUE i 9.3053709 T
i ADMDL i 9.5694885E-03 11 CuMD1L i 0.3754165 ‘i
i CuMD1 ! 1.1153221E-02 {1 ADMD1 ] M.39:1322 i
o KSMDO1 i 1.63733328~-02 11 KSMD1 i 0.4156374 it
H KSMD2 ! 2.4338266E-02 1! CuMD2 ] 0.5204881 i
i CuUMD2 i 2.5020871E-02 ! KSMD2 g 0.5390435 i
i ADMDZ2 i 2.9120248E-22 11 ADMD2 i 0.6280289 i
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TABLE V
Mean square error for c =1 and n =18
i LOCATION (a) e SCALE (b? i
'l i i
it ESTIMATION ] it ESTIMATION ! HE
i1 TECHNIQUE ! MSE {1 TECHNIQUE ! MSE H
(I ] ] ) : = : :
8] i ‘i ' i
! BLUE i 4.3005478E-03 ! BLUE [ 0.1737252 i
Y ADMD 1 t 5.2362322E-03 ! CuMD1L i 0.2037124 H
Y CUMD1 | 6.4189113E-03 ! KSMD1 i 0.2041911 i
Y ADMD2 i 8.6196102E-03 ! ADMD1} ] 0.2043972 i
i KSMD1 ! 1.0911038E-02 i} KSMD2 H @.2185375 i
P CUMD2 i 1.1255259E-02 1 CUMD2 ' 0.2299257 H
H KSMD2 i 1.2906388E-02 i1 ADMD2 ! 0.2362998 ti
TABLE VI
Mean square error for c =2 and n=2=5
' LOCATION (a) A SCALE (b) i
it ESTIMATION | it ESTIMATION ] H
i1  TECHNIQUE ! MSE it  TECHNIQUE ! MSE H
i BLUE i 1.1706Q45E-02 i} BLUE | 0.5737305 ti
i ADMD1 i 1.2802768E-02 ! KSMD1 ] 0.70808300 T
HY CUMD: i 1.3687569E-02 | CuMD1 H 0.7609552 '
' KSMD1 \ 1.500S208E-02 i CuVMD2 ] @.7871752 i
i CuMD2 { 1.7071828€E-907 ! ADMD1 ! 0.8051341 H
v KSMD2 t 2.2394231E-02 |} KSMD2 i 0.9329775 i
i ADMD2 \ 2.8150991E-02 !} ADMD?2 1 1.161523 i
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TABLE VII

Mean square error for c =2 and n=9

¥ :t i
Y LOCATION (a) H SCALE (b) i
] il il
i i HH | HH
{1 ESTIMATION i it ESTIMATION ' i
{1 TECHNIQUE H MSE it TECHNIQUE ! MSE e
y ] i 1 i
14 t HE ' i
e BLUE i 4.6055736E-03 ! BLUE ! 0.2564761 i
i ADMD1 i 5.1687085E-03 |} KSMD2 { 0.2969004 b
Y CUMD1 { 5.9630712E-03 i1 CuMD1 | 0.3137060 HH
i CuUMD2 i 6.9629652E-03 ! KSMD1 i ©.3169191 HH
' KSMD1 i 6.9843503E-03 ! cuMD2 | 0.3197137 ]
i KSMD2 i 7.8367852E~03 1| ADMD1 i 0.3233747 i
HH ADMD2 | 8.9378590E-03 ! ADMD2 H 0.4040874 i
TABLE VIII
Mean square error for c =2 and n=12
H LOCATION (a) i SCALE (hb) i
it ESTIMATION ' i1 ESTIMATION H e
it TECHNIQUE H MSE {1 TECHNIQUE : MSE i
Y BLUE { 1.9467@87E-03 ! BLUE ! 9.1986142 K
i ADMD1 { 2.2874754E-03 |} KSMD2 ] 0.2196842 [
' CUMD1 i 2.9733009€E-03 ! ADMD H 0.2351739 HH
i ADMD?2 \ 3.0276354E-03 ! CUMD1 ' 0.2386533 i
H KSMD1 i 3.4914461E-03 || KSMD1 ] 0.2393238 o
H CUMD2 i 3.7764474E-03 i CUMD2 : 0.2408351 i
Y KSMD2 { 4.6899226E-03 ! ADMD2 ! ©.2438605 i

63




e T T LIl T T A AR ERS W 8 e ® s m m s wmen o e e e e -

@@ WMo NW B el el N
O MNMSAWNS NN OO~
NS IO [~ <t S WWWww —
w NWw--0 < W ul S~ 9 - <
w W~ 0 wWw@aMa (2] et~
wn x= LN s e} x N < <+ << < <IN
- — o - NN N -4 — e e e e et
n Bel [ SRR = RS R B ] L} o 999008086
c c
wi ¥}
J == w= me os] se en e es ce am ee ws = d L e L L B L D G it
< <
o Q o (%]
[ = [72] c w
L} 4 L) r4
o wl o w
— D —_ - N NN [ N o ot N N
- waoagaooaoaaQ - woocaoaoaoan
o~ T o B = SE) =g S 2l 4 o~ < SO XX XXX
= Z S2D>0u|;m>un QA ) -4 J QA >, o
L} — I MOCx OX L] — I MY OO Xx T
> - O -
— 8} wy wi > 8] w w
w w -
23] wi <
| J [€s]
@ |8 R R i B ittt a C B (i e I e i L it
= [e] BT B e I i o) N o I B I L L I et
t— [, - (e
[l B2 e B e I e ) < < NN NN
(& 909000988 C [ SRS ISR RS RS B
[o] [ I S N N S N | [o] [ I S S U |
C W www [ W w W www ot
[ SN M oW W | w K~ ww - -
[} 57 ~ M < < WwwWwm [} w DO S K
wn Maga—-Nedt>~om w oo wMaod
[ = WMWSe oI~ LY = ~-MS OO DN W
[ -~ N < <~~~ < C -~ o >-oNOS
a ™ munumuy =N o L L} —~ 0~ 02—~ U o
3 ~ Nt DS MW W. ~ ~ 1w
jay . 3 . - . . . - » . . .
L2 -4 — SN NNON M (] P4 D o e = -
o o
c — B . B e D i c — B I I R S S
) — L4} -
L] << M) <<
x (&) = Q
o =z o r4
) O w - o w
— D - =N - NN - D —_ N NN
(el =4 woaogaoooo - wooooaQaoQ
T 2 EXE XXX XX << D2 XXX X X
2 “~a>aw>uwum E Z Jaoa>uno>uwm
— T OC O C xO X ~ T OC < OXxXx OX
— Q - Q
[T} L ul
w wl -




TABLE XI

Mean square error for c =3 and n=8

0 i i
i LOCATION (a) ol SCALE (b) i
R i i
i : | i o
i1 ESTIMATION : ti ESTIMATION ] H
i1 TECHNIQUE i MSE i1 TECHNIQUE H MSE t
i i i i i
H ! v i H
il BLUE | 4.6162526E-03 i1 BLUE i 0.3430938 i
H ADMDL { 4.7417325€E-03 i KSMD2 } 0.3799514 i
i CuMD1 i 4.9956846E-03 || KSMD1 i 0.4261144 H
o cuMb2 i 5.5936114E-03 i1 CUMD2 i 0.4292807 i
i KSMD1 ! 5.6171883E-03 1! CumMb1 i 0.4521263 H
i KSMD2 { 6.1545176E-03 i1 AOMD1L i 0.4634998 H
i ADMD2 i 1.7377743E-02 i ADMD2 i 0.7602041 i
TABLE XII

Mean square error for c =13 and n=219

i v i
i LOCATION (a) H SCALE (b) T
H ' i ] A
i1 ESTIMATION : il ESTIMATION i i
i1 TECHNIQUE i MSE {1 TECHNIQUE ] MSE i
H i W i W
i BLUE { 2.55@4350E-03 i1 BLUE i 0.2173082 Y
i ADMD1 i 2.9328801E-03 ! KSMDZ : 0.2343150 i
o CumMbD1 t 3.2298244E-03 1! CuMD2 ! 2.2613097 i
H KSMD1 ! 3.4083289E-03 ! CuMD1 : 0.2633551 i
i CuMD2 i 3.4843122E-03 11 KSMO1 ! 0.2647687 N
U ADMD2 ! 3.6204350E-03 ! ADMD1 ' 0.2666046 H
i KSMD2 i 3.8682341E-03 1! ADMDZ2 : 0.2911893 i
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TABLE XIII

Mean sqguare error for c =13 and n =12

Y i H
H LOCATION (a) HH SCALE (b) W
Y : ¥ : ¥
{1 ESTIMATION ] {1 ESTIMATION H i
it TECHNIQUE i MSE it TECHNIQUE | MSE it
e ! | i b
HE BLUE i 1.10327S0€E-03 ! BLUE H 0.1465466 i
i ADMD1 t 1.3244717E~-03 i KSMD2 H 0.1634654 ti
tt ADMD2 { 1.5484567E-03 ! CuMD2 ' @.1717137 P
i CUMD1 { 1.6325671E-03 {1 ADMD1 i ©.1786888 i
i CUMD2 : 1.8109155E-03 ! CUMD1 H @.1787402 i
HH KEMD1 i 1.8245766E-03 ! ADMD?2 H 0.1813732 H
i KSMD2 i 2.155440Q09E-03 i KSMD1 ' 0.1851933 i
it i i ! il
TABLE XIV
Mean square error for c =3 and n =15
] LOCATION (a) HH SCALE (b)) H
i i i
i ! H ! t
i1 ESTIMATION L it ESTIMATION \ i
i1 TECHNIQUE ! MSE it TECHNIQUE | MSE HH
11 i 1l ! i
HH i i : t
H BLUE \ 6.19968793E-04 ! BLUE ! 0.1280874 N
i ADMD1 i B6.2581321E-04 !} ADMD1 ] 0.1454554 i
i ADMD2 ! 1.0506152E-03 ! CUMD1L i @.14674b8 i
HH CUMD1 { 1.0802834E-03 ! KSMD2 \ 0.1484211 o
I KSHO1 { 1.2737850E-03 ! KSMD1 ] 0.1518526 i
I CUMD2 i 1.2966762E-083 ! CuMD2 { 0.1521726 Hf
i KSMD2 i 1.3728395E-03 ! ADMD2 : 0.1580111 i
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o TABLE XV

Mean square error for c =3 and n =18

P o ¥
i LOCATION (a) P SCALE (b) i
i 14 ¥
i1 ESTIMATION ! 11 ESTIMATION | i
1t TECHNIQUE ! MSE {4  TECHNIQUE ! MSE i
X ; Y ; ¥
i BLUE ! 3.5388739E-04 !! BLUE ! 0.1050092 i
‘ H ADMD 1 | 4.7275926E-04 ! KSMD2 ! 0.1183296 '
%}f ' ADMD?2 ! 5.8612920E-04 !! ADMD1 {  0.1190109 '
o ' cuMDt ! 6.7394995€-04 ! CUMD1 ! 0.1217095 P
S i KSMD1 ! 7.913923SE-04 !! CUMD2 ! 0.1237090 '
. " CUMD2 ! 8.1001956E-04 !! KSMD1 ! 0.1239811 i
ii i KSMD?2 ! 1.0424773E-03 ! ADMD2 ! 0.1250392 P
kc.: 10 ] [ 3K [] [ ]
k,"‘
N
TABLE XVI

Mean square error for c =4 and n==56

i i i
v LOCATION (a) Y SCALE (b) i
it ESTIMATION ' i1 ESTIMATION i i
i1 TECHNIQUE ] MSE i1 TECHNIQUE i MSE i
i BLUE 1 2.2004284E-03 1! BLUE : 0.29085423 b
i ADMO1L ! 2.3699524E-03 i1 KSMD2 i 0.3169968 i
ii CUMDI { 2.567181BE-03 i1 CuMD2 i 0.3370034 i
H CuMD2 i\ 2.6604387E-03 11 KSMD1 : ©.3809848 H
Y KSMD1 | 2.7944315E-03 ! CuMD1 i 0.3836123 i
i ADMD2 i 3.0173361E-03 |1 ADMD2 ' 0.3902711 i
H KSMD2 i 3.1544713E-03 1} ADMD L i ©0.3999430 i
i i i i it
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TABLE XVII

Mean square error for c =4 and n=239

H LOCATION (a) ¥ SCALE (b) ¥
it [ ()
¥ : H = H
{! ESTIMATION ! tt ESTIMATION ! ¥
{1 TECHNIQUE ! MSE {1 TECHNIQUE | MSE '
() 1 [ I} : ::
¥ BLUE | 9.8934094E-04 !! BL JE i ©.1908786 !
¥ ADMD1 ! 1.1494281E-03 !} KSMD2 | 0.2043502 it
¥ CuMD1 ! 1.3984025E-03 !! CUMD2 | 0.2244718 1
¥ ADMD2 ! 1.4030078E-03 !! ADMD2 i ©.2334024 i1
¥ cuMD2 | 1.48570605-03 !! ADMD1 ! 0.2394877 il
' KSMD1 | 1.5590133E-03 i1 CuMD1 | 0.2420758  !!
¥ KSMD2 | 1.7752400E-03 !} KSMD1 | 0.2460075 !
:: ! ¥ : {d

TABLE XVIII

Mean square error for c =4 and n =12
N HH HH
i LOCATION (a) i SCALE (b) H
ii ESTIMATION ' it ESTIMATION i i
it TECHNIQUE : MSE i1 TECHNIQUE i MSE HH
Y BLUE | 4.3847732E-04 1} BLUE i 0.14542456 HY
Y ADMD1 i 5.3575670E-04 ! KSMD2 i @.1606177 it
i ADMD2 i 6.4326968E-04 1 ADMD2 ! ©0.1745982 P
N CuMD1 i 7.0931221E-84 ! CumMD2 i 0.1752579 i
HH CuMD2 i 8.9394%6E-04 1 ADOMD L ] @.1773948 H
i KSMD1 i B8.4389572E-04 ! CUMD1 i 0.1846511 i
i KSMD2 i 9.7926683E-04 ! KSMD1 i 0.1893843 e
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TABLE XIX

Mean square error for c =4 and n =15

H LOCATION (a) i SCALE (b) H
i i HH
H i i ! i
i1 ESTIMATION i i1 ESTIMATION H i
i1 TECHNIQUE i MSE i1 TECHNIQUE i MSE i
i J it ! i
i BLUE { 2.8805208E-04 ! BLUE ] 0.1210762 i
N ADMD1 { 3.7486354E-04 ! KSMD2 ] 0.1318542 i
H ADMD?2 | 4.3274325E-04 i} CuMD2 i 0.1393966 i
i cumMD1 ! 5.3938437E-04 1! ADMD2 i 0.1417205 i
H cumMbD2 { 6.0927385E-04 !! ADMD1 i 0.1437690 i
i KSMD1 ! 6.2738883E-04 ! cumMbd1 i @.1477181 i
i KSMD2 ! 7.416@Q466E-04 ! KSMD1 : 9.1574258 11
] i 1 : i
TABLE XX

Mean square error for c =4 and n =18

i LOCATION (a) v SCALE (b) i
i1 ESTIMATION i it ESTIMATION ] i
i1 TECHNIQUE i MSE i1 TECHNIQUE ! MSE Hi
P BLUE + 1.99439843E-04 ! BLUE i 9.3522320E-02 i}
i ADMD1 { 2.6885197E-04 I KSMD2 i 1.0123040E-01 i
P ADMD2 i 2.9941079E-04 !} ADMD L { 1.0706935E-01 !
‘i CUMD1 i 4.2770977E-04 1 ADMD2 ! 1.077195Q€E-01 i}
il CcumMn2 i 4.5176961E-04 |1 CuMD2 { 1.0861484E-01 |
H KSMD1 i 5.0622342E-04 1! CuMD1 i 1.1239370E-01 11
H KSMD2 ¢ 5.9582230E-04 ! KSMD1 i 1.1357192E-01 |
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Appendix B

Computer Program for Estimator Comparison

The following FORTRAN computer program, BLUMD.FOR, was written to
perform the Monte Carlo analysis and to generate the mean square errors
for each estimation technique investigated. Program documentation is
included within the program as comment statements to inform the reader
of the purpose of each statement or group of statements. Additionall.,
each subroutine 1s prefaced by extensive documentation to inform the
reader of the purpose of the subroutine, all of the variables used in
the subroutine, the 1nput variables required, the output variables
generated, and the major computations performed within the subroutine to

obtain the desired outputs.
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N c BLUMD (BLU/MINIMUM DISTANCE) MAIN PROGRAM

~
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i

c Purpose: BLUMD calculates the best linear unbiased estimates 1in
c addition to the six minimum distance estimates

c (based on the Kolmogorov, the Cramer-von Mises, and the
c fAnderson-varling distances) for both the location and

c ccale parameters of the three parameter Pareto

c distribution, uhere the shape parameter 1s varied

c betueen the integer values 1,2,3 and 4. Sample sizes
c
c
c
c
(o

A %
e}

-
CAOA
¢ L

(2
Al

Lot A Al
PRSI

. -

of 6, 9, 12, 15, and 18 are used. Pareto variates are
generated for each combination of shape parameter and
sample size. Finally, BLUMD calculates the mean square
error for each estimate type to compare which
estimation technique performs best.

Tr———

’
I

o %

® Variables: n = sample size
: c = shape parameter
x nn = sample size symbol (varies from 1-S
. representing each permissable sample size)
- kkk = dummy variable used to convert nn to n by
:b using the formula: kkk = 3 + (nn+3)
o dseed = double precision seed for the Pareto variates
- x = array of Pareto variates
}i B = array of B values used to calculate the blues

for shape greater than 2
BB = array of BB values used to calculate the blues
for shape less than or equal to 2
D = constant used to calculate the blues for shape
greater than 2
Anc = constant used to calculate the blues for shape
less than or equal to 2

-i Bnc = constant used to calculate the blues for shape
x less than or equal to 2
- ablue = blu estimate of location, a
:f bblu = blu estimate of scale, b
{f akS = Kolmogorov minimum distance estimate for a
- bKS = Kolmogorov minimum distance estimate for b
- aCVM = Cramer-von Mises min distance estimate for a
bCVYM = Cramer-von Mises min distance estimate for b
r afAD = Anderson-Darling min distance estimate for a
A while holding b = bblu as constant
bAD = Anderson-Darling min distance estimate for b
while holding a = ablu as constant
aZAD = Anderson-Darlaing min distance estimate for a
b2AD = Anderson-Darling min distance estimate for b
alCV = Cramer-von Mises min distance estimate for a

uhile holding b = bblu as constant

biCV = Cramer-von Mises min distance estimate for b
while holding a = ablu as constant

alKS = Kolmogorov minimum distance estimate for a
while holding b = bblu as constant

biKS = Kolmogorov minimum distance estimate for b
while holding a = ablu as constant

OO0 0000000000000 00000000C0O00000C000D00C0O0D0

1

S et . e m e v e s e o xR e e




c sse = array of sum of squared errors for each

c estimation technique where the true value of
c a 15 | and the true value of b 1s 1.

c mse = array of mean square errors for each

c estimation technique used

c count = array of counters used to count the number of
c valid estimate values found

c anda = array of calculated A-D distance measures

c when estimating location alone

c esta = array of location estimates used to minimize
c the A-D distance

c icnt = counter for the number of location estimates
c used to minimize the A-D distance

c andb = array of calculated A-D distance measures

c when estimating scale alone

c estb = array of scale estimates used to minimize

c the A-D distance

c 1cntbh = counter for the number of scale estimates

c used to minimize the A-0 distance

c andab = array of calculated A-D distance measures

c when estimating a and b simultaneously

c estaa = array of location estimates used to minimize
c the A-D distance

c estbb = array of scale estimates used to minmimize

c the A-D distance

c icntab = counter for the rumber of location and scale
c estimates used to minimize the A-D distance

G == = m e e e e e e e
c Inputs: dseed = double precision seed for Pareto variate

c generation

c c = shape parameter

c n = sample size

Gm o m o et e e o e e
c Outputs mse = array of mean square errors for each

c estimation techmique for each parameter under
c investigation (location and scale)

= = e e m e
c Calculate: mse = sse/mumber of trials

»#% Variable Declc ations
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS, bKS,

1 aCVM, hCVM, afD, bAD, nn, count, azAD, b2AD, anda, esta,1cnt
1 ,andb,estb,1cnth,andab,estaa,estbbh, icntab
i ,alCv,blCV,alKs,biks
integer n,nn,count(4,5,14),c,kkk,1cnt,1cnth,1entab
real x(18),ablu,bblu,8(18),D,Anc,Bnc,BB(18),aKS,bkKS,
1 aCVM,bCVM, afAD,bAD,sse(4,5,14) ,mse(4,5,14),azAb0,bZA0
1 ,anda(50@), andb(500), andab(500),esta(500),estb(500),
1 estaa(500),estbb(5@0),aiCV,blCV,alKs,blKS

double precision dseed
call uerset(@,levold)

dseed = 43846218217.d0@
print* 'dseed = ’,dseed
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do 90 1=1,4
c =1
nn = 0
do 8@ 3;=6,18,3
n=3
nm =nn+1
do 40 333-1,14
sse{c,nn,jji)
40 continue
do 70 it = 1,1000
1f ((it.eq.200)
1 {1t.eq.800)
print* 'c=*,
end :f
call PARVAR
1f (¢ .qgt. 2
call BCGT
call 8LCG
go to 45
end 1°
call BCLE?
call BLCLEZ
45 if (ablu .eq
go to 70
end 1f
call KSMD
call CVMMD
call ADMD
call ADBMD
call ADZMD
call CVAMD
call CVBMD
call KSAMD
call KSBMD
c #+# Calculate the Sum of
58 sse{c,nn,l)
sse(c,nn,2)
sse{(c,nn,3)
sse(c,nn,4)
sse(c,nn,5)
sse(c,nn,B)
sselc,nn,7)
sse(c,nn,B)
sse(c,nn,9)
sse(c,nn,10)
sse(c,nn,11)
sse(c,nn,12)
sse{c,nn,13)
ssel(c,nn,14)
1f (1t .eq.

c »2x» Calculate the mean square error for each estimate type

do 606 11 =
kkk = 3

=9

.or. (it.eq.400) .or. (1t.eq.600)
.or. (1t.eq.1000)) then
c,' n=',n,’ 1iteration=',it

) then
Z
T2

. @ .and. bblu .eq. @) then

Squared Errors
sse{c,nn,1) + (ablu - 1)#x?
sse(c,nn,2) (bblu - 1)#+2
sse(c,nn, 3) (akKS - 1)#s2
sse(c,nn,4) (0KS - 1)#+2
sse{c,nn,S) (aCVM - 1)#=2
sse(c,nn,B) (bCVM - {)=»2
sse(c,nn,?) (afD ~ 1)ws?
sse(c,nn,8) (bAD - 1)=#2
sse(c,nn,8) + (aZAD - 1)*=2
sse{c,nn,10) + (bZAD - 1)»*»2
sse(c,nn,11) + (alCV - 1)*%7
sse(c,nn,12) + (bICV 1)%e2
sse(c,nn,13) + (alK$ 1)es?
sse(c,nn,14) + (biKS - 1)#«2
19800) then

+ + 4+ + + + +

1,14
+ (nn#*3)
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1f {count(c,nn,11) .eq. @) then

print*, ‘count=0 for c=',c,' n=",kkk,’est=",11

go to 6O

end 1f

mse(c,nn,ll) = sse(c,nn,11)/count(c,nn,1l)
pr‘lnt*,'nse=’,.nSe(c.nn,ll)" C=',C,’ n:"kkk” es‘t-‘-',ll

print+*, *count = ',count(c,nn,11)

6 continue
end 1f
79 continue
80 continue
30 continue
end
Subroutine PARVAR
= e e e e e e
c Purpose: For a specified sample size, n, PARVAR
c generates n random variates from a Pareto
c distribution with location and scale parameters
c set equal to one and the shape parameter, c,
c set “o either 1,2,3 or 4.
o mmmt e e e ot e o
¢ Formula x = (1/r)*e(1/c)
o ~ e e m e —mm e e
c Variables-
c r = random rumber
c = = shape paramzter
c X = array of Fareto variates
c n = sample size
c dseed = random number seed
Cm e e e m i —————
c Inputs: dseed = random rumber seed
C ¢ = shape parameter
c n = sample size
Cm = mm e e e e m e e — e e m e
c wtputs » = #rray of Parato random variates
e mm e e e m e m e mmm o
¢ Calculate:
c x(3) = (1/r(3)) #¢ (1/C)
c
Cmmm = e m = e e cm e m—— e m i — e
c #*% Variable Declarations
reai r{1%),x(18),ablu,bblu,B(13} 2,Anc,Bnc,BB(18),akKs, bKS,
1 aCVM, bCVM, «AD. AD, a2..0,bZAD
integer n,c,nn,count(4,5,14)
common n,x,c,ablu,bblu,dseed,B, 2, inc,Bnec, BB, akS,bks,
1 aCvM, tCVM, aAD, bAD, nn, coun.,azAl, bZAD
double pracision dseed
do 10 3=1,n
c #+# Call IMSL random musnber generator subroutine gogubs
call gogubs(dseed,n,r)
c #x+ Use the 1nverse transform technique for Pareto variates
x(1)=(1/¢ (3))%e(1/real(c))
10 continue
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»x+ Call VSRTA to sort the variates 1r ascending order

c

call vsrtai{x,n)

return

end

Subroutine BCLEZ
= = e n A m i mmm e e —————
c Purpose: For a given sample size, n, and a specified shape
c {(¢-1 or ¢=2); BCLEZ calculates the B values used
c to find the blu estimates of location and scale.
c In addition, 1t calculates the constants Anc and Bnc
c for the given shape and sample size.
Gmmm e e e e e
c Variables: c¢ = shape parameter
c n = sample size
c BB = array of B values (k in number)
c k = number of order statistics used; k=n-[{2/cl
c nc = product of n and c
c Anc = constant in tha formula for the blu for scale
c Bnc = constant 1n the formula for the blu for scale
Qmmm e e m e m—m e mmmmmm et e
c Inputs c = shape parameter
c n = sample size
m = m e e e e e e e e
c ODutputs BB = array of B values
c Anc = constant in the blue for the scale parameter
c Bnc = constant 1n the blue for the scalz parameter
G m = m e m e e e
c Calculate:
c Anc = (c+iXctZ)(nec-1) / (nc-2)¥(nc-c-2)
c
c Bnc = (nc-2) / (c+2)
c
c For c={ B(1) = (1 - 1/} L 1 ~ 1/(n-1) 1
c
c For ¢=2 : B(1) =1 - 1/n
c
Bm = mm
c +#* Variable Declarations:

real nc,x(18),ablu,bblu,B(18),D0,Anc,Bnc,BB(18),aKs,bKS,

1 aCVM, bCVM, anAD, bAD, aZAD, bZAD

integer n,k,c,nn,count(4,5,14)

double precision dseed

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc.BB, aks, bKS,

1 aCVM, bCVM, aAD, bAD, nn, count,aZAD,bZAD

k=n-(2/¢c)

c #+» Calculate the B values wiien c=1
1f (c.eq.l) t.aen
do 10 3=1,k
BB(3)=(1-3/real(n))*’1-3/{real(n)-1))
1@ cont  nue
go .. 36
end 1f

c #+#+ Calculate the B values when c=2 (1.e., c.ne.l)
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do 20 m=1,k
BB(m)=i-m/real(n)
20 continue
36 nc = n#+*c
C »#» Calculate the constants Anc and Bnc

Anc= ((c+l)*(c+2)*(nc-1)) / ({nc-2)*(nc~-c-2))
Bne= {(nc-2) / (c+2)

return

end

Subroutine BLCLEZ
Qe mmm e m e — i m A m o mmm e m e m o mm e m . mm e
c Purpose: For a given sample size, n, and shape (c=i or c=2),
c BLCLEZ calm:lates the best linear unbiased estimates
c of location and scale for a sample of ordered Pareto
c variates.
(e == mm s~ — ;e ——— e ———— e m A m e —————————————————————
c Variables: x = array of ordered Pareto variates
c ¢ = shape parameter
c n = sample size
c BB = ar~ay of B values used to calculate the blues
c nc = product or n and c
c k = number of order statistics used; k = n - [2/cl
c Ainc = constant used to calculate the blue for scale
c Bne = constant used to calculate the blue for scale
c Bxsum = sum of [B(1) = x(1)] terms for 2 = {,2,. . . ,k
c ablu = blu estimate of the location parameter, a
c bblu = blu estimate of the scale parameter, b
c count = array of counters used to count the number of
c valid estimate values found
G e e e e e e
¢ Inputs x = array ot ordered Pareto variates
c ¢ = shape parameter
c n = sample size
c BB = array of B values used to calculate the blues
c Anc = constant used to calculate the blue for scale
c Bnc = constant used to calculate the blue for scale
== mmmm e e e
c Outputs: ablu = blu estimate of the location parameter, a
c bbiu = blu estimate of the scale parameter, b
G mm e e
c Calculata:
c b= (Anc) { BO1Ix(1) * B(2)x(Z) + ... + B(k)x(k)
c - (Bnclix(1) 1
c
c a=x(1) -1 bilne-1) 1
c
Gmm e e
c #+* Yariable Declarat:ans:

real x{(.3),ablu,bblu,Bxsum,nc,B(18),0,Anc,Bnc,BB(18),

1 aKs,bKS,aCVM,bCVNM, aAD, bARD, aZzAD, bZAD

integer n,k,c,nn,count(4,5,14)
double precision dseer
comumon n,x,c,ablu,bbl. | .seed,B,D,fAnc,Bne, BB, aKs, bKs,
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3
N

1 alVM, bCVM, aAD, bAD, nn, count,aZAD, bZAD
Bxsum=0
k=n-(2/c)
c 222 Sym the products of B(i) and x(1) for & = 1,2,...,k
do 10 j=1,k
Bxsum=Bxsum+BB(j)#x(j)
10 continue
nc=n#*c
c #=» Calculate the blue for scale, then for location
bblu=Anc*(Bxsum - Bnc#x(1))
ablu=x{1)-bblu/(nc-1)
c #++ Increment counter for valid blues
if (bblu .gt. @) then
count(c,nn,l) count(c,nn,1) + 1
count{c,nn,2) count{c,nn,2) + 1

else
print#*,'bblu=’ ,bblu,'ablu=",ablu,’ negativity’
ablu = @
bblu = @
end if
return
end
Subroutine BCGT2
= = e e e
c Purpose: For a given sample size, n, and a specified shape,
c c)2; BCGTZ calculates the B and D values used to
c find the blu estimates of location and scale.
G o o e e S e e e e e
¢ Variables: c = shape parameter
c n = sample size
c B = array of B values (n in size)
c D = D value
c bsum = sum of B values for i=1 . . . (n-1)
G e i e e e
c Inputs: ¢ = shape parameter
c n = sample size
Dm = o m e e
¢ Outputs B = array of B values
c D = D value
mmm e m e e e e
c Calculate:
c B(i) = [1 ~ Z/c(n~-141)}) *» B(1-1)
c
c D= (ctl)IB(1) + B(2) + ... + B{n-1)] + (c~1)B(n)
c
Cmm = m e e e e e
c ##+ Variable Declarations:

real bsum,x(18),ablu,bblu,B(18),0,A8nc,Bnc,BB(18),akKs,bks,
1 aCVM, bCVM, aAD, bAD, aZAD, b2A0

integer n,c,nn,count{(4,5,14)

double precision dseed

common n,x%,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, akS,bKS,
1 aCVM, hCVM, aAD, bAD, nn, count,aZAb,bZAD
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igrce o -
;%; :§ Sff c #++ Calculate the first B value
. ;' B(1)=(1-(Z/(c*real(n))))
- c #++ Calculate the second thru the nth B values
y - do 10 ;=2,n
;.;I; > B(j)=B(3-1)#(1-(2/({real{c)*(n-3+1))))
INe N 10 continue
\f , ﬁ bsum=0
£t o c s*s Sum the *first’ to the 'nth minus one' B values
. do 20 k=1,{(n-1)
y % bsum=bsum+B(k)
-3 L 29 continue
x N c ##+ Calculate the D value
N o D= (ctl) # bsum + (c-1) * B(n)
o N return
7 end
Ci - Subroutine BLCGTZ
- = Cmmm e e e e e e e e e
{i Y ¢ Purpose: For a given sample size, n, and a specified shape,
Ny o c c)2, BLCGTZ calculates the best linear unitiased
Lf > c estimates of location and scale.
o . = o T T e e e e e e e e e e e e e e e e e e e — e — e e
- :i ¢ Variables: x = array of ordered Pareto variates
sl K c ¢ = shape parameter
o N c n = sample size
2 R . c B = array of B values used to calculate the blues
; = ﬁ;é c D = D value used to calculate the blues
Qe ) c Y = Y value used to calculate the blues
:i- ‘:- c ablu = blu for location parameter, a
R o~ c bblu = blu for scale parameter, b
-i: . c Bxsum = sum of [B(1) *# x(1)] terms for i = 1,2...,(n-1)
e N c nc = product of n and ¢
'f- . c caunt = array of counters used to count the number of
= c valid estimate values found
= = = e e
c Inputs x = array of ordered Pareto variates
c c = shape parameter
c n = sample size
c B = array of B values used to calculate blues
c D = D value used to calculate the blue
G m e e e e
c Qutputs: ablu = blu estimate for location, a
c bblu = blu estimate for scale, b
Gm == o e
¢ Calculate:
c Y = (cHl) B(LlIx(1) + B(2)x{(2) + ... + B(n-1)x(n-1) 1
c + (c-1) B(n)x{n) 1 - Dx(1)
c
c a=x(1) - ¥Y/{(nc-1)(nc-2) ~ Dncl
c
- c b= (nc-1) [ x(1) - a)
- c
) " C _________________________________________________________________ -
c »+# Variable Declarations:
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real x(18),ablu,bblu,Bxsum,nc,Y,B(18),D,Anc,Bnc,BB(18)
1 ,aKs,bKS,aCvM, bCVM, aAD, bAD, aZAD, bZAD

integer n,c,nn,count(4,5,14)

double precision dseed

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS, bKS,

1 aCVM, bCVM, aAD, bAD, nn,count, 22A0, bZAD
Bxsum=0
c sa# Syum the products of the B(i) and x{(1) values to i = n-1
do 1@ j=1,(n-1)
Bxsum=Bxsum+B(3)#x(3)
10 continue
c ##+ Calculate the Y value
Y=(c+1)#Bxsum+(c~1)#B(n)2x(n)-D*x(1)
nc=n#*c
c s#+ Calculate the blu estimates for location and scale
ablu=x(1)-Y/((nc-1)#*(nc-2)-(nc*D))
bblu=(nc-1)+#(x(1)-ablu)
c +x* Increment counters for valid blues
1f (bblu .gt. @) then
count(c,nn,1) = count{(c,nn,1) + 1
count{c,nn,2) = count(c,nn,Z2) + 1
else
print+,’ablu="',ablu,’ bblu="*,bblu,’ negativity’
ablu = @
bblu = @
end 1f
return
end
Subroutine KSMD
Cm == e e e
c Purpose: KSMD generates the minimum distance estimates of
c location and scale based upon minimizing the
c Kolmogorov distance measure defined in subroutine
c KDIS. This routine uses the blu estimates as the
c starting points for the estimate modifications.
Gmm e e e e
c Variables: NPAR = number of parameters altered by minimizing
c the Kolmogorov distance
c NSIG = number of signmificant digits for convergence
c MAXFN = maximum rumber of function evaluations
c I0PT = options selector (see IMSL manual on ZXMIN)
c H, G, W = vectors defined 1n IMSL marual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of Kolmogorov distance at the final
c parameter estimates
c kse = Kolmogorov derived minimum distance estimates
c aK8 = Kolmogorov minimum distance location estimate
c bKS = Kolmogorov minimum distance scale estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
Cmmmm = e e m - — i~ —————————————————————— e
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¢ Inputs: NPAR = number of parameters altered while minimizing
c NSIG = number of signmificant digits required
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c kse = 1nitial estimates for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
G m e e e e e
c Outputs F = minimum value of the function being minimized
c kse = revised estimate values
c aKS = revised MD estimate of location [aKS = kse(1)]
c bKS = revised MD estimate of scale [bKS = kse(2)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
Cm ==~ e e e e e e
¢ Calculate: no calculations performed 1n this subroutine
G = e e e
c #x# Variahles Declaration-

commsn n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, aK§, bKS,

1 aCVM, bCVM, afD, bAD, nn,count, aZzAD,b2AD

external kdis

integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,cnunt(4,5,14)

real kse(2),H(3),6(2),W(B),F,x(18),ablu,bblu,akKs,bKS,

1 B(18),D0,Anc,Bnc,BB(18),aCVM, bCVM, aAD, bAD, aZAD, bZAD

double precision dseed
c #++ Enter the ZXMIN required constants

NPAR = 2

NSIG = 3

MAXFd = 500

I0PT = @
c #+» Initialize the kse values to the blu estimates

kse(l) = ablu

kse(Z) = bblu
c #+x Call ZXMIN to refine the kse values by mimimizing
c ren the Kolmogorov distance (KST) computed 1n the
c xen subroutine KDIS

call ZXMIN(KDIS,NPAR,NSIG,MAXFN,IO0PT,kse,H,G,F,W,IER)
c #2+ Relabel the refined estimates of location and scale

akKS = kse(1)

bKS = kse(2)
c #x% Incremcmt the KS counters

count(c,nn,3) = count{z,nn,3) + 1

count{(c.nn,4) = count{c,nn,4) + 1

return

end

Subrouxine KDIS(NPAR,kse,F)
Cmm = =~ e e e e
¢ Purpose: KDIS provides the function which 1s to bhe minimized
c by ZXMIN for the Kolmogorov distance measure. The
c location and scale parameters are altered to achieve
c this minimization.
= mm = m e e e e mm e m—m——— e
¢ Variables: NPAR = number of parameters available to alter
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c n = sample size
c kse = estimates of the parameters being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c z1 = array of Pareto cdf points
c DP = positive differences bhetueen the EDF and cdf
c DM = negative differences hetween the EDF and cdf
c DPLUS = maximum positive difference
c DMINUS = maximum negative difference
c KST = Maximum of DOPLUS and DMINUS
(mmmm e mm e m e mm e m e mmmm e m e e m e e e e ——m—————————————
c Inputs: NPAR = number of parameters availahle to alter
c n = sample size
c kse = initial estimates (the blu estimates)
c x = array of ordered Pareto variates
c ¢ = shape parameter
e m =~ mmmm e m e — e e m e ————
¢ Qutputs F = value of the function at the final estimates
c kse = revised estimates of location and scale;
c these are the Kolmogorov mimimum distance
c estimates
Gmm == e e e
¢ Calculations:
c z(1) =1 - (1 + (x(1)-al/b)xe(-c)
c
c DP(i) = ABSL 1/n - z(i) 1
c
c DM(i) = ABSL 2(1) - (1-1)/n 1
c
Q= = e e e
c s#x Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D, Anc,Bnc,B8,akKs,bKs,
1 aCVM, bCVM, anD, Bad, nn, count,aZAD,bZAD
i1integer NPAR,n,c,nn,count(4,5,14)
real kse(NPAR),F,x(18),21(18),0P(18),DM(18),DPLUS,
1 DMINUS,KST,ablu,bblu,B(18),0,Anc,Bnc,BB(18),aKS,bKSs,
1 aCVM,bCVM, aAD, bAD, aZzAD,bZAD
double precision dseed
c +++ Calculate the Pareto cdf value [21{(3)] at each point
c ren and the differences betueen the EDF step function
c 1) and the cdf points
do 10 j3=1,n
zi(3) = 1-(1/014+(x(3)~-kse(l))/kse(2)))=»c
DP(3) = ABS(3/real(n) - z1(3))
DM(3) = ABS(z1(3) - (3-1)/real(n))
10 continue

#% Select the maximum of the plus and minus differences
DPLUS = MAX(DP(1),DP(2),DP(3),DP(4),DP(5),DP(6),DP(T7)

1 ,OP(8),0P(8),DP(1@),DP(11),0P(12),0P(13),DP(14)
1 ,OP(15),0P(16),DP(17),DP(18))

DMINUS = MAX(DM(1),0M(2),DM(3),0M(4),DM(5),DM(6),0M(7)
1 ,OM(8),0M(9),DM(10),0M(11),DM(12),DM(13),0M( 14)
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i ,DM(15),DM(16),0M(17),0M(18))
#22 Select the maximum Kolmogorov distance measure and
taa set F equal to that distance. F becomes the
xEe function which ZXMIN attempts to minimize by
taa altering the values of the location and scale
L5 parameters
KST = MAX(DPLUS,DOMINUS)
F = KST
return
end

Subroutine CVMMO

Purpose: CVMMD generates the minimum distance estimates of
location and scale based upaon minimizing the
Cramer-von Mises distance measure defined in subroutine
CVMDIS.
starting points for the estimate modifications.

NSIG
MAXFN
I0PT

H, 6, W
IER

cvme
aCvM
bCVM
ablu
bblu
count

Inputs: NPAR
NSIG

MAXFN

10PT

cvme

Wit

| L2 L N T I I [}

ablu =
bblu =

This routine uses the blu estimates as the

rnumber of parameters altered by minimizing
the Cramer-von Mises (CVM) distance

umber of sigmficant digits for convergence
maximum number of function evaluations
options selector (see IMSL manual on ZXMIN)
vectors defined 1n IMSL mamual on ZXMIN
error parameter (see IMSL manual on ZXMIN)
value of CVM distance at the final

parameter estimates

CVM derived minimum distance estimates

CVM minmimum distance location estimate

CYM minimum distance scale estimate

blu estimate of location

blu estimate of scale

array of counters used to count the number of
valid estimate values found

number of parameters altered while minimizing
mumber of significant digits required

maximum number of function evaluations

options selector (see IMSL manual on ZXMIN)
1n1tial estimates for the minimization process
blu estimate of location

blu estimate of scale

minimum value of the functio: being minimized
revised estimate values

revised MD estimate of location [(aC¥M=cvne(1)]
revised MD estimate of scale {bCVM=cvme(2)]
vectors defined 1n IMSL manual on ZXMIN

error parameter (see IMSL manual on ZXMIN)

ol - e T " - —— = . - S e e T e T = o e e R = A o= A R . - - - - . - - ——m - - —

Calculate: no calculations performed i1n this subroutine
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+++ Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,D,fAnc,Bnc,BB,akKs, bKs,
aCVM, bCVM, aAD, bARD, nn, count , aZzAD,bZAD

external cvmdis

integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14)

real cvme(2),H(3),6(2),W(6),F,x(18),ablu,bblu,aCVM,bCVM
,8(18),0,Anc,Bnc,BB(18),akK5,bKS, aAD, bAD, azAD, bZAD

double precision dseed

s+ Enter the ZXMIN required constants

NPAR = 2

NSIG = 3

MAXFN = 500

IOPT = O

#+* Initialize the cvme values to the blu estimates

cvme(l) = ablu

cvme(2) = bblu

##* Call ZXMIN to refine the cvme values by minimizing

i 22 the CVM distance (WZ) computed in the

L2 2 subroutine CYMDIS

call ZXMIN(CVMDIS,NPAR,NSIG,MAXFN,IOPT,cvme,H,G,F,W,IER)

##* Relabel the refined estimates of location and scale

aCVM = cvme(l)

bBUVM = cvme(2)

##3% Increment the CVM counters

count{(c,nn,9) count(e,nn,5) + 1

count(c,nn,B) count(c,nn,B) + 1

return

end

Subroutine CVMDIS(NPAR,cvme,F)

by ZXMIN for the Cramer-von Mises distance measure.
The location and scale parameters are altered to
achieve this minimization.

Variables: NPAR

number of parameters available to alter

n sample size
cvme estimates of the parameters being altered
F value of the function to be minimized

x = array of ordered Pareto variates

c shape parameter
z1 array of Pareto cdf points
Acv the squared quantity 1n the WZ formula
SCVM the sum of the ACYV guantities
Wz the CVM distance measure
Inputs: NPAR = number of parameters available to alter
n = sample size
cvme = 1ni1tial estimates (the blu estimates)
x = array of ordered Pareto variates
¢ = shape parameter
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c Outputs: F = value of the function at the final estimates
c cvme = revised estimates cf location and scale;
c these are the CVM minimum distance estimates
G m e mm e e m e
c Calculations:
c z{(1) =1 - (1 + [x(1)-al/b)*s(-C)
c
c ACV(i) = 1 z(1) - (Z2-1)/2n 1#x2
c
c SCVM = ACV(1) + ACV(Z) + ... + ACV(m)
c
c W2 = SCVM + 1/1Zn
c
(G m e
c *+# Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aks,bKS,
aCVM, bCVM, aRD, bAD, nn, count,aZzAD, bZ2AD
integer NPAR,n,c,nn,count(4,5,14)
real cvme(NPAR),F,x(18),2zi(18),5CVM,ACV{18), U2
,ablu,bblu,B(18),0,Anc,Bnc,BB(18),aKs,bKS, aCVM, bCVN,
afD, bAD, aZzAD,bZ2AD
double precision dseed
SCVM = 0
do 10 3=1,n
z1{1) = 1-(1/(1+(x(3)-cvme(l))/cvme(Z)))==c
ACV(§) = (zi(3) - (Z#3-1)/(Z22real(n)))**?
SCVM = SCVM + ACV(j)
10 continue
W2 = SCVM + (1/(12#*real(m)))
F =Wz
return
end
Subroutine ADMD
= m e e
¢ Purpose: ADMD generates the minimum distance estimates of
c the location parameter based upon minimizing the
c Anderson-Darling distance measure defined in
c subroutine ADDIS. ADMD uses the blu estimates as the
c starting points for the estimate modifications.
g g
c Variables: NPAR = numher of parameters altered by minimizing
c the Anderson-Darling (A-D) distance
c NSIG = number of sigmficant digits for convergence
c MAXFN = maximum number of function evaluations
c I0OPT = options selector (see IMSL manual on ZXMIN)
c H, G, W = vectors defined 1n IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of A-D distance at the final
c parameter estimates
c ade = A-D derived mimimum distance estimate
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afRD = A-D mimmum distance location estimate
ablu = blu estimate of location
bblu = blu estimate of scale
count = array of counters used to count the number of
valid estimate values found
anda = array of calculated A-D distance measures
esta = array of location estimates used to minimize

the A-D distance measure
icnt = counter for the numher of estimates used

Inputs NPAR = number of parameters altered while minimizing
NSI6G = rumber of sigmificant digits required
MAXFN = maximum rumber of function evaluations
I0OPT = options selector (see IMSL manual on ZXMIN)
ade = 1nitial estimate for the minimization process
ablu = blu estimate of location
bblu = blu estimate of scale
G o = e e
Outputs F = mimimum value of the function being minimized
ade = revised estimate values
afAb = revised MD estimate of location [aRD = ade(l)]
H, 6, W = vectors defined 1n IMS5L manual on ZXMIN
IER = error parameter (see IMSL manual on ZXMIN)
G mmm e ———— e e — . ———
Calculate: no calculations performed in this subroutine

s+* Yariables Declaration:

common n,x,c,ablu,bblu,dseed,B,D, Anc,Bnc,BB, aKS, bkKS,
aCVM, bCVM, afAD, bAD, nn, count ,aZAD, b2AD, anda, esta,1cnt
,andb,estb,1cntb,andab, estaa, esthb,1cntab

external addis

1integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),1cnt,hh
yicntb,i1cntab

real ade(1),H(1),G(1),W(3),F,x(18),ablu,bblu,afld,bAD
,B(18),0,Anc,Bnc,BB(18),aKs,bKS, aCvVM, bCVM, aZzAD,bZ2AD
,anda(500),esta(50@),A01,andb(500),esth(500), ardabl 500)
,estaa(500),estbb(500)

double precision dseed

s+x Enter the ZXMIN required constants

NPAR = 1
NSIG = 3
MAXFN = 500
I0PT = @

#+* Imtialize the ade value to the blu estimate

ade(1) = ablu

#+¢ (Call ZXMIN to refine the ade values by minimizing
res the Anderson-Darling distance (AD! computed in
(234 the subroutine ADDIS

call ZXMIN(ADDIS,NPAR,NSIG,MAXFN,IOPT,ade,H,G,F,W,IER)
afDl = ade(l)

##* Reinitialize the 1cnt, anda, and esta arrays
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25 icnt = @
do 38 1 = 1,W(2)

anda(i1) = @
esta(i1) = @

30 continue
c #»+ Increment AD counter for valid AD estimates

count{(c,nn,?7) = count(c,nn,?) + 1

return

end

Subroutine ADDIS(NPAR, ade,F)
G e e e o e e e e e
¢ Purpose: ADDIS provides the function which 1s to be minimized
c by ZXMIN for the Anderson-Darling distance measure.
c The location parameter 1s altered to achieve the
c minmimization.
G mmm e m i ————— i e i e e e e e e o
¢ Variables: NPAR = number of parameters available to alter
c n = sample size
c ade = estimates of the parameter being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c ¢ = shape parameter
c z1 = array of Pareto cdf points
c AAA = array of terms to be summed 1n AD formula
c SAAD = sum of the AAA(i) terms
c AD = Anderson-Darling distance measure
c anda = array of calculated A-D distance measures
c esta = array of location estimates used to minimize
c the A-D distance measure
c icnt = counter for the number of estimates used
G m = e e o e e
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c ade = 1nitial estimate (the blu estimate)
c x = array of ordered Pareto variates
c c = shape parameter
G = = e e e e e e
c Qutputs F = value of the function at the final estimate
c ade = revised estimate of location; this 1s the
c Anderson-Darling minimum distance estimate
Gm = = e e e e e e e
¢ Calculations:
c z{1) =1 - (1 + [x{1)-al/h)*=x(-¢)
c
c AAA(1) = (212-1) [ 1n 2(1) + 1n ( 1-2(n+l=-1) ) ]
c
c SARD = ARA(L) + AAA(Z) + ... + ABAA(N)
c
c AD = (-SARD)/n - n
cC
== e m e e o
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c »#+ Yari1able Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, aK5,bKS,
1 aCVM,bCVM, aAD, bAD, nn, count,azAl,bzAD, anda,esta,1cnt
1 ,andb,estb,icnth,andab,estaa,estbb,1cntab
integer NPAR,n,c,nn,count(4,5,14),1¢cnt,:enth,icntab
real ade(NPAR),F,x(18),2i(18),ARA(18),5AA0,AD
1 ,ablu,bblu,B8(18),0,Anc,Bne,BB(18),aKs,bKS,aCVM, bCVM,
1 afb, bAD, aZzA0,b2AD, anda( 500),esta( 500)
1 ,andh(500),esth(508), ancab(500),estaal 508}, estbb{500)
double precision dseed
do 10 3=1,n
c ++* Calculate the Pareto cdf point values
zi(j) = 1-(1/(1+(x(3)-ade(1))/bblu))s=c
c sx¢ Test z1(3) and I 1 - z1{(j) 1 for negativity
1f (21(3).1e.® .or. z1{j).ge.l) then
oo to 30
end 1§
190 continue
SARD = O
c +s+ Calculate the Anderson-Darling distance
do 20 m=1,n
AAA(M) = (Z*m-1) * (log{(zi{m)) + log(l-z1(n+i-m)))
SAAD = SAHAD + AAA(mM)
20 continue
D = (~1) *» (n + SAAD/n)
c #x% Save the AD and ade(l) values
1icnt = icnt + 1
andalicnt) = AD

esta(icnt) ade(1)
c #x* Relabel the A-D distance
F = AD
go to 40
30 ade(1) = estalicnt-1)
40 return
end
Subroutine ADBMD
G e o o S n e e e
¢ Purpose: ADBMD generates the minimum distance estimates of
c the scale parameter based upon minimizing the
c Anderson-Darling distance measure defined in
c subroutine ADBDIS. ADBMD uses the blu estimates as the
c starting points for the estimate modifications.
G e e e e e e
c Variables: NPAR = number of parameters altered by minmimizing
c the Anderson-Darling (A-D) distance
c NSI6G = number of significant digits for convergence
c MAXFN = maximum number of function evaluaticons
c IOPT = options selector (see IMSL marmual on ZXMIN)
c H, G, W = vectors defined in IMSL manual on ZXMIN
c 1ER = error parameter (see IMSL manual on ZXMIN)
c F = value of A-D distance at the final
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parameter estimates
ade = A-D derived minimum distance estimate
bAD = A-D minimum dis’'ance scale estimate
ablu = blu estimate of location
bblu = blu estimate of scale
count = array of counters used to count the number of
valid estimate values found
andb = array of calculated A-D distance measures
estb = array of scale estimates used to minimize
the A-D distance measure
icntb = counter for the number of estimates used
Inputs: NPAR = number of parameters altered while minimizing
NSIG = number of significant digits reguaired
MAXFN = maximum number of function evaluations
IOPT = options selector (see IMSL manual on ZXMIN)
ade = 1nitial estimate for the minimization process
ablu = blu estimate of location
bblu = blu estimate of scale
Outputs F = minimum value of the function being minimized
ade = revised estimate values
bAD = revised MD estimate of scale (bAD = ade(l)}
H, G, W = vectors defined 1n IMSL manual on ZXMIN
IER = error parameter (see IMSL manual on ZXMIN)
Calculate: no calculations performed 1n this subroutine

#+» Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, aks, bKS,
1 aCVM, bCVM, aAD, bAD, nn, count, aZzAD,b2AD, anda,esta,icnt

,andb,estb,1cntb, andab, estaa,estbb,1cntab

external adbdis

1nteger NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),1cnt
1 ,1cntb, 1cntab, hhh

real ade(1),H(1),6(1),W(3),F,x(18),ablu,bblu,afD,bAD

1 ,B(18),0,Anc,Bnc,BB(18),akKs,bkKS,aCVM, bCVYM, aZAD, bZAD
i yanda(500),esta(500),andh(500),estb(500), andab( 500),
1 estaa(500),estbb(500),AD7

double precision dseed
s++ Enter the ZXMIN required constants

NPAR = |
NSIG = 3
MAXFEN = 500
I0PT = @

se# Jniti1alize the ade value to the blu estimate

ade(1l) = bblu

#++ Call ZXMIN to refine the ade values by minimizing
L33 the Anderson-Darling distance (AD) computed 1n
ren the subroutine ADBDIS

call ZXMIN(ADBDIS,NPAR,NSIG,MAXFN, IOPT, ade,H,G,F,W, IER)




S bPD = ade(1)

c s#% Reinitialize the i1cntb, andb, and estb arrays
25 1cnth = @
do 30 1 = 1,W(2)
andb(1) = @
estb(i) = @
30 continue
c ¢#+ Increment AD counter for valid AD estimates
count{(c,nn,8) = count(c,nn,B8) + 1
return
end
Subroutine ADBDIS(NPAR, ade,F)
= e m e e e m e m e e e mm e mmm e
c Purpose: ADBDIS provides the function uhich is to be minimized
c by ZIXMIN for the Anderson-Darling distance measure.
c The scale parameter 1s altered to achieve the
c minimization.
Cmmmmmm e e e e m e ———— e m e —mm e
c Variables: NPAR = mnumber of parameters available to alter
c n = sample size
c ade = estimates of the parameter being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
. c z1 = array of Pareto « 'f points
iL; c AAA = array of terms to be summed in AD formula
c SAAD = sum of the AAAR(i) terms
c AD = Anderson-Darling distance measure
c andb = array of calculated A-D distance measures
c estb = array of scale estimates used to minimize
c the A-D distance measure
c 1cntb = counter for the number of estimates used
Cm m = e e e e e e
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c ade = initial estimate (the blu estimate)
c x = array of ordered Pareto variates
c c = shape parameter
= = e e e e
c Outputs F value of the function at the final estimate

O

]

Q

®
non

revised estimate of scale; this 1s the

c Anderson-Darling minimum distance estimate
¢ Calelations: T
c z(1) =1 - (1 + {x(1)-al/b)ex(-c)
z ARAR(L) = (Z2-1) [ 1n 2(1) + 1n ( 1-z(n+l-1) ) ]
E SAAD = AAA(L) + ARAA(Z) + ... + AAA(RN)
{;; 2 AD = (-SAAD)/n - n




gy
c s+»* Variable Declarations:
common n,x,c,ablu,bblu,dseed,8,D,Anc,Bnc, BB, akKs, bKS,
1 aCvM,bCVM, afD, bAD, nn, count ,aZAD,b2AD, anda, esta, 1cnt
1 ,andb,estb,1cntbh,andab,estaa,estbb,icntab
integer NPAR,n,c,nn,count(4,5,14),1cnt,1cntbh,1cntab
real ade(NPAR),F,x(18),z1(18),AAR(18),5AA0,AD
1 ,ablu,bblu,B(18),0,Anc,Bnc,BB(18),akKs,bKS,aCvVM, bCVM,
1 afD,bAD, aZAD,hZAD
1 ,anda(500),esta(50@), andb(500),estb(500), andab({ 500),
1 estaa(500), estbb(500)
double precision dseed
do 10 j=1,n
c ss# Calculate the Pareto cdf point values
z1(j) = 1-(1/(14(x(3)-ablu)/ade(1)))eac
c s+ Test z1(3) and [ 1 - zi()) ]l for negativity
1f (z1(3).1e.0 .or. 21(3).ge.l) then
go to 3@
end if
10 continue
SARD = ©
c #+# Calculate the Anderson-Darling distance
do 20 m=1,n
ARA(m) = (Zem-1) * (log(zi1(m)) + log(l-zi1(n+l-m)))
SRAD - SAARD + AARA(M)
yx'] continue
AD - (-i) = (n + S5RAD/ N
c *r++ Save ine AD and ade(i) values
icnib - 1cnib + i
andol{icntb) - AD
estblicntb) - ade(li:
c »++ Relabel the A-D distance
f - AD
go to 49
36 ade{i’) - estblicntb-i)
49 return
end
Subroutine ADZMD
Cmm—mmm e m i m e e m e mmmmmmm e

e e

c Purpose- ADZiD generates ine minimum distance estimates of
iocation and scale simuitaneousiy, based on minimizing
the Anderson-Dariing distance measure defined 1in

c
c subrouiine ADZOI5. AUDZMD uses the Diu estimates as the
c starting poinis for ihe estimaie modifications.

7]

g U
¢ Variables- NFAR - number of parameiers altered by minimizing

c the Anderson-Dariing .A-U) distance

c NSIG - number of significani digiis for convergence

c MAKFN - maximum number of function evaluations

c iOFT - options seiecior (see IfSL manuai on ZXMINI

56




c H, G, W = vectors defined 1n If5_L manual on ZAMIN
c 1ER - error parameter (see iifiS5L manual on ZXHINJ
c ¥ - vaiue of fA-0 distance at ine finai
c parameier esiimates
c ade - f-0 derived minimum distance estimate
c azifAb - A-D minimum distance iocaiion esiimatie
c 0ZAD - A-0 minimum disiance scale esiimate
c abiu - blu estimate of iocation
c obiu - Dlu estimate of scaie
c count - array of counters used to count the number of
c vaiid estimate vaiues found
c andab - array of caicuiated A-D distance measures
c estaa - array of iocation estimates used to minimize
c the fA-D distance measure
c estob - array of scaie estimates used to minimize
c the A-U distance measure
c 1cntab - counter for the number of estimaites used
G m = m e mmm e ————————— e — e
¢ Inputs NFAR ~ number of parameters altered wniie minimizing
c NSIG - number of significant digits required
c HAKFN - maximum number of function evaiuations
c iOFT - options selector {(see Iifi5_L manual on ZAHInN?
c ade - 1niti1ali estimate for the minimization process
c abiu - biu esiimate of location
c oolu - bDlu esiimate of scaie
Cmmmm e e e e
c Qutputs- F = minimum vaiue of the function being minimized
c ade - revised estimate vaiues
c azAb - revised M0 estimate of location {aZRU - adeti’i
c DZAD - revised FD estimate of scale {DZIAD - adeiZ)i
c tH, G, W - veciors defined in IfSL mamnual on ZAHIN
c IER - error parameier (see IfiSL manual on ZAMIN)
i m = e e~ e e m e m e
c Caicuiate no caicuiations performed in tnis subroutine
Cmm = e e e e e e o e e e
c «++ Variabies Declaration-
common n,x,c,abiu,bbiu,dseed,B, U, Ainc, Bne, 56,aKk5, 0kKS,
i aCvii, bCvii, afd, bAl, nn, count, aZzAbD,bZ2AD, anda, esta,1cnt
i ,ando, estb, 1cntb, andan, estaa,estob,1cntao
external adZdis
integer NFAR,N516,AKFN, IO0FT,n,c,nn,count{4,5,1i47
i .1cnt, 1cntb.1cntab,hhhh
real ade{(Z,H{3),6(Z:,Wib’,F,x{187,abiu,bdbiu,afn’d,ofrDd
i ,B(187,0,fAnc,Bnc,BB{ 187 ,ak5, kS, aCvii, bLVii, aZRD, bZ Al
i ,andai 5667, estal 5667, andbi 5667, estiol 5607, andabl 5667,
i estaa\ 35007 ,esibbi{ 5667,A03
doubie precision dseed
c s+2+ Enter the ZXHIN required constants
NPAR = 2
NSIG = 3
MAXFN = 500
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10FT - @

c +e+ [ni1tialize tne ade vaiue to tne Diu estimate
adel(i’ - abiu
ade(Z: - bbiu

.
)
.
]
.

.
.

c vse Cail ZXMIN to refine the ade values by minmimizing
c e the Anderson-Darling distance (AD) computed in
c ree the subroutine ADZDIS
call ZXMIN(ADZDIS,NPAR,NSIG,MAXFN,IOPT, ade,H,6,F,W,IER)
azAD = ade(1)
bZAD = ade(2)
c s*» Reinitialize the icntab, andab, estbb, and estaa arrays
25 1cntao = 6

do 3@ i = 1,W(2)
andab(i1) = 0
estaali’ - @

estbbii’ - @
3o contirue
c »2» Increment AD counter for vaiid AD estimates

countic,nn,57 = count(c,nn,9) + 1
counti{c,nn,1d) = count{c,nn,1d6) + i

return
end
Subroutine AD20IS{NPAR,ade,F7
D S
¢ FPurpose- ADZDIS provides the function which i1s to be minimized
‘t; c by ZXMIN for the Anderson-Darling distance measure.
c Thne iocation and scale parameiers are boin altered to
c achieve the minimization.
G mm e e e
c Variables: NPAR = number of parameters available to alter
c n = sample size
c ade = estimates of the parameter being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c z1 = array of Pareto cdf points
c AARA = array of terms to be summed in AD formula
c SAAD = sum of the AAA(1) terms
c AD = Anderson-Darling distance measure
! c andab = array of calculated A-D distance measures
3 c estaa = array of location estimates used to minimize
1 c the A-D distance measure
. c estbb = array of scale estimates used to minimize
- - c the A-D distance measure
-~ c icntab = counter for the rnumber of estimates used
v c ————————————————————————————————————————————————————————————————
- c Inputs: NPAR = number of parameters available to alter
. c n = sample size
c ade = 1mtial estimate (the blu estimate)
c x = array of ordered Pareto variates
5?1 c c = shape parameter

9z




c Outputs: F = value of the function at the final e: timate
c ade = revised estimates of location and scale;
c these are the Anderson-Darling minimum
c distance estimates
= m = m == m e e e e e meemae e
c Calculations:
c z(i) =1 - (1 + {x(i)-al/b)==(-C)
c
c ARA(L) = (2i-1) € 1n 2(1) + 1ln ( l-z(n+tl-i) ) 1
c
c SAAD = AARA(L) + AARA(Z) + ... + AAA(N)
c
c AD = (-SAAD)/n - n
c
G mmm = mmm e o o e
c s## Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnec, BB, aKs, bKS,
1 aCVM, bCVM, aAD, bAD, nn, count,aZAD,bZAD, anda, esta,icnt
| ,andb,estb,icntb,andab,estaa,estbh,icntab
integer NPAR,n,c,nn,count(4,5,14),1cnt,1cnth,1cntab
real ade(NPAR),F,x(18),21(18),AAA(18),SAAD,AD
,ablu,bblu,B(18),D,Anc,Bnc,BB(18),aKs,bKS, aCVM, bCVM,
1 afD, bAD, azAD,bZAD, anda( 500),esta(500), andb(50@),
1 estb(5@0),andab(500),estaa(500),estbb(500)
double precision dseed
do 10 )=1,n
c #»# Calculate the Pareto cdf point values
z1(3) = 1-(1/¢1+(x{())-ade(l))/ade(Z)))xxc
c sox Test zi(3) and [ 1 - 21(3) )1 for negativity
1f (21(j).le.® .or. 21(3).ge.l) then
go to 3@
end 1f
10 continue
SAAD = @
c +»+ Calculate the Anderson-Darling distance
do 720 m=1,n
AAA(mM) = (2#m-1) # (log(zi(m)) + log{l-zi(n+l-m))}
SARD = SAARD + AAA(mM)
10 continue
AD = (-1) = (n + SAAD/n)
c »##+ Save the AD and ade(l) values
icntab = 1cntab + 1
andab(1icntab) = AD
estaalicntab) = ade(1l)
esthbl(icntab) = ade(2)
c +%+ Relabel the A-D distance
F = AD
go to 40
30 ade(1) = estaa(icntab-1)
ade(Z) = estbb(icntab-1)
40 return
end
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Subroutine CVAMD

g
c Purpose: CVAMD generates the minimum distance estimates of
c the location parameter based upon minimizing the
c Cram=r-von Mises distance measure defined 1in
c subroutine CVADIS. CVAMD uses the blu estimates as the
c starting points for the estimate modifications.
Qm = == mm e e —mm e m e m e m e m e m e mmmm e
c Variables: NPAR = rumber of parameters altered by minimizing
c the Cramer-von Mises (CVM) distance
c NSIG = number of significant digits for convergence
c MAXFN - maximum number of function evaluations
c I0PT = options selector (see IMSL manual on ZXMIN)
c H, G, W = vectors defined i1n IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of CVM distance at the final
c parameter estimates
c cvme = CVM derived minimum distance estimate
c alCV = CVUM minimum distance location estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
g S
c Inputs. NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations
c I0OPT = options selector (see IMSL mamnual on ZXMIN)
c cvme = 1mtial estimate for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
gy g
c OQutputs F = minimum value of the function being minimized
c cvme = revised estimate values
c alCV = revised MD estimate of location [alCV=cvme(1)])
c H, 6, W = vectors defined wn IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on 2ZXMIN)
gy
c Calculate: no calculations performed 1n this subroutine
Cmmmmm = m e e o e e — -
c +#& Variables Declaration:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aks,bKs,
1 aCvM, bCvM, aAD, bAD, nn, count,aZAD,bZAD, anda, esta,1cnt
1 ,andb,esth,1cntb,andab,estaa,estbb,1cntab

,alCV,biCV,alKs,blKS
external CVADIS
1nteger NPAR,NSIG,MAXFN,I0PT,n,c,nn,count(4,5,14),icnt,hh

1 ,1cntb,1cntab
real cvme(1),H(1),6(1),W(3),F,x(18),ablu,bblu, afD,bAD
1 ,B(18),D,Anc,Bnc,BB(18),aKs,bKS,aCVM,bCVM, aZAD, bZ2AD
i ,anda(500),esta(500),AD1, andb( 508}, estb(500), andah( 500)
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wy | ,estaa(500),estbhb(500),al1CV,blCV,alKS,biKS
double precision dseed
A c sss Enter the ZXMIN required constants
- NPAR = |
s NSIG = 3
> MAXFN = 500
%) IOPT = @
c ### Initialize the cvme value to the blu estimate
cvme(l) = ablu
c sss Call ZXMIN to refine the cvme values by minimizing
c #en the Cramer-von Mises distance (W2) computed in
c L3 2 the subroutine CVADIS
call ZXMIN(CVADIS,NPAR,NSIG,MAXFN,I0PT,cvme,H,G,F,U¥,IER)
c ##¢ Relabel the refined estimates of location
alCV = cvme(1l)
c +#» Increment the alCV counter
count(c,nn,11) = count{c,nn,11) + 1
return
end
Subroutine CVADIS({NPAR,cvme,F)
= mm mm e e e e
c Purpose: (CVADIS provides the function which 1s to be minimized
c by ZXMIN for the Cramer-von Mises distance measure.
c The location parameter is altered to
- c achieve this minimization.
\ W = = e e e
c Variables: NPAR = number of parameters available to alter
c n = sample size
c cvme = estimates of the parameters being altered
c F = value of the function to be minmimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points
c ACV = the squared quantity i1n the WZ formula
c SCVM = the sum of the ACV quantities
c W2 = the CVM distance measure
m = mm e o e e e e e ———————————
c Inputs: NPAR = number of parameters availahle to alter
c n = sample size
c cvme = 1nitial estimates (the blu estimates)
c x = array of ordered Pareto variates
c c = shape parameter
= m = e e m
c Outputs F = value of the function at the final estimates
c cvme = revised estimates of location and scale;
c these are the CVM minimum distance estimates
Cmmm e = m e e
c Calculations:
c z(1) =1 - (1 + [x{(1)-al/b)=*(-c)
g c
T c ACV(1) = 1 2(1) - (2i-1)/2Zn 1es2

95




v

<
«
P

+
\
.
- DR
et
~ o
[

SCVM = ACV(1l) + ACV(2) + ... + ACV(M)

uz SCVM + 1/12n

noo0oa

0

sa# Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, aKS, bKS,
1 aCvM,bCVM, aAD,bAD, nn, count,aZAbD,bZAb, anda, esta,icnt
1 ,andb,esth,1cntb,andab,estaa,estbb,i1cntab
1 ,alCV,blCV, alKS,blKS
1nteger NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14) ,icnt,hh
1 ,icntb,1cntab
real cvme(1),H(1),6(1),W(3),F,x(18),ablu,bblu,afD,bAD
,B(18),D,Anc,Bnc,BB(18),aK5,bKS, aCVM, bCVM, aZAD, bZAD
,anda(500),esta(500),A01,andb(500), esth(500), andab( 500)
,estaa(508),estbb(500),a1CV,biCV,alKs,blkKS
,2i(18),SCVM, ACYV(18),W2
double precision dseed
SCVM = 0
do 10 3=i,n
z1(31) = 1-(1/(14+(x(j)-cvme(1))/bblu))e2c
ACV(j) = (z1(j) - (2%3-1)/(Z*real(n)))#s?
SCVM = SCVM + ACV(j)
. 10 continue
s WZ = SCVM + (1/(1Z*real(n)))
F = W2
return
end
Subroutine CVBMD

9]

g
;

o,

N e

c Purpose: C(CVBMD generates the minimum distance estimates of

c the scale parameter based upon minimizing the
Cramer-von Mises distance measure defined 1n

subroutine CVBDIS. CVBMD uses the blu estimates as the
starting points for the estimate modifications.
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Variables: NPAR = number of parameters altered by mimimizing
the Cramer-von Mises (CVM) distance

number of significant digits for convergence
maximum number of function evaluations
options selector (see IMSL manual on ZXMIN)
vectors defined 1n IMSL manual on ZXMIN
error parameter (see IMSL manual on ZXMIN)
value of CVM distance at the final

parameter estimates

CVM derived minimum distance estimate

CVM minimum distance scale estimate

blu estimate of location

blu estimate of scale

array of counters used to count the number of

a0

1

NSIG
MAXFN
I0PT

H, 6, W
IER

F

M A A i
PR

SR

cvme
bicv
ablu
bblu
count
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)
00000000000 O0
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c valid estimate values found

c = number of parameters altered while minimizing
c = rnumber of significant digits required

c = maximum number of function evaluations

c IOPT = options seiector (see IMSL manual on ZXMIN)

c = ini1ti1al estimate for the minimization process
c = blu estimate of location

c = blu estimate of scale

c = minimum value of the function being minimized
c = revised estimate values

c biCV = revised MD estimate of scale [blCV=cvme(l)]

c = vectors defined i1n IMSL manual on ZXMIN

c = error parameter {(see IMSL manual on ZXMIN)

c Calculate: no calculations performed in this subroutine

c s»# Variahles Declaration:
common n,x,c,ablu,bblu,dseed,B,D, Anc,Bnc,BB, aKS, bKS,
1 aCvM, bCVM, aAD, bAD, nn, count,azfb,b7AD, anda,esta,1cnt
1 ,andb,estb,1cntb,andab,estaa,estbb,1cntab
1 ,alCv,blCv,alkKS,blKS
external CvBODIS
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),1cnt, hh
1 ,1icntb,1cntab
real cvme(1l),H(1),6(1),W(3},F,x(18),ablu,bblu,afd,bAD
1 ,B(18),D,9nc,Bnc,BB(18)Y,aKS,bKS, aCvVM,bLVM, aZA0, bZAD
,anda(500),esta(5@0),AD1, andy{ 5008), estb(50@), andab( 500)
1 ,estaa(500),estbb(500),alCVv,blCV,alKS,blKS
double precision dseed
c #+% EFnter the ZXMIN required constants
NPAR = 1
NSIG = 3
MAXFN = 500
IOPT = @
c s2» Initialize the cvme value to the blu estimate
cvme(1l) = bblu
c a#s Call ZXMIN to refine the cvme values by minmimizing
c LE X the Cramer-von Mises distance (WZ) computed in
c rae the subroutine CVBDIS
call ZXMIN(CYBDIS,NPAR,NSIG,MAXFN,IOPT, cvme,H,G,F, W, IER)
c »2% Relabel the refined estimates of scale
biCV = cvme(1)
c #+» Increment the bICV counter
count(c,nn,12) = count{c,nn,12) + 1
return
end
Subroutine CVBDIS(NPAR,cvre,fF)

c Purpose: (VBDIS provides the function uwhich is to be minmimzed
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c by ZXMIN for the Cramer-von Mises distance measure.

c The scale parameter 1s altered to

c achieve this minimization.

Gmmmm e mm e e m e e mm e e mm e mmmm e e
c Variables: NPAR = number of parameters available to alter

c n = sample size

c cvme = estimates of the parameters being altered

c F = value of the function to be minimized

c x = array of ordered Pareto variates

c c = shape parameter

c zi = array of Pareto cdf points

c ACV = the sguared quantity i1n the W2 formula

c SCVM = the sum of the ACY quantities

c Wz = the CVM distance measure

Cmmmmm e o e e e i e
c Inputs: NPAR = number of parameters available to alter

c n = sample size

c cvme = initial estimates (the blu estimates)

c x = array of ordered Pareto variates

c c = shape parameter

= = = m e ———m e e
c Outputs F value of the function at the fi.al estimates

(e}

Q

<

3

(1]
non

revised estimates of scale;
these are the CVM minimum distance estimates

0o

Calculations:
z2(1) = 1 - (1 + [x(1)-al/b)sr(-c)

ACV(1) = [ 2(i) - (Z2i-1)/2Zn 1=a2
SCVM = ACV(1) + ACV(2) + ... + ACV(n)

WZ = SCVM + 1/12Zn

0O00000000

Cm rmmm = m e mmmm—m— m e m e e m e e —————
c #s2% Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D, Anc,Bnc,BB, aKs, bKs,
1 aCVvM, bCVM, afAD, bAD, nn, count,aZAD,b2AD, anda, esta,1cnt
1 ,andb,esth,icntb, andab,estaa,estbhb,1cntab
,alCV, blCV, alkKS,blkKS
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),1cnt,hh
1 ,1cntb,1cntab
real cvme(1),H(1),6(1),W(3),F,x(18),ablu,bblu, afD,bAD
,B8(18),D,Anc,Bnc,B8B8(18),aKs,bKS,aCVM,bCVM, aZzAD, bZAD
,anda(500),esta(50@),A01,andb(S20),estb(500), andab(500)
,estaa(500),estbb(500),z1CV,blCV,alkKsS,blKS
,z1(18),5CVM,ACV(18),U2
double precision dseed
SCvM = @
do 10 3=1,n
z1(1) = 1-(1/7(1+(x())-ablu)/cvme(l)))==c

[V U Y
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ACV(3) = (zi(3) - (2#3-1)/(Z2¢real(n)))=s?
SCVYM = SCVUM + ACV(j)

10 contirnue

W2 = SCVM + (1/(1Z2#real{n)))

F = Wz

return

end

Subroutine KSAMD
Cmm e mm e~ m e m e mmm e e e A mmamee oo m————
c Purpose: KSAMD generates the minimum distance estimates of
c location based upon minimizing the
c Kolmogorov distance measure defined in subroutine
c KADIS. This routine uses the blu estimates as the
c starting points for the estimate modifications.
Qm—cmm e mmmmm e A m o e e m e A m e e —m— e — e e
c Variables: NPAR = number of parameters altered by minimizing
c the Kolmogorov distance
c NSI6G = rnumber of significant digits for convergence
c MAXFN = maximum number of function evaluations
c I0PT = options selector (see IMSL manual on ZXMIN)
c H, 6, W = vectors defined i1n IMSL marnual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c f = value of Kolmogorov distance at the final
c parameter estimates
c kse = Kolmogorov derived minimum distance estimates
c alkS = Kolmogorov minimum distance location estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
Cem=mememmmmemmm e ;e — e oo e e e e m e — e mmm e ——m e
c Inputs: NPAR = number of parameters altered while minimizing
c NSIG = rumber of significant digits requirei
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c kse = 1niti1al estimates for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
g g gy
c Outputs F = minimum value of the function being minimized
c kse = revised estimate values
c alkS = revised MD estimate of location [alKS = kse(l)]
c H, G, W = vectors defined 1n IMSL mamnual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
e
c Calculate: no calculations performed in this subroutine
g g g
c s+ Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, akS, bKS,

1 aCVM, bCVM, aAD,bAD, nn, count, aZAD, bZAD, anda, esta,icnt
1 ,andb, estb,1cntb,andab, estaa,estbh,icntab
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,alCv,blCV,alkKS,blkKS

external KADIS

1nteger NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),icnt,hh
,1cntb,1cntab

real kse(1l),H(1),6(1),W(3),F,x(18),ablu,bblu,afDd,bAD
,B(18),D,Anc,Bnc,BB(18),aK5,bKS, aCVM, bCVM, aZAD, bZAD
,anda(500),esta(500),AD1, andb(500),estb(500), andab({ 500)
,estaa(500),estbb(500),alCV,blCV,alksS,blKsS
,z1(18),5CVM,ACV(18),UZ

double precision dseed

r+¢ Enter the ZXMIN required constants

NPAR = 1
NSIG = 3
MAXFN = 500
I0PT = @

s## Imtialize the kse values to the blu estimates
kse(1) = ablu

#++¢ Call Z¥MIN to refine the kse values by minimizing
P the Kolmogorov distance (KST) computed in the
taw subroutine KADIS

call ZXMIN(KADIS,NPAR,NSIG,MAXFN,IOPT,kse,H,G,F,W,IER)
+s* Relabel the refined estimates of location

alkS = kse(1l)

##+ Increment the alKS counter

count(c,nn,13) = count(c,nn,13) + 1

return

end

Subroutine KADIS{(NPAR,kse,F)

Purpose: KADIS provides the function which 1s to be minimized

by ZXMIN for the Kolmogorov distance measure. The
location parameter 1s altered to achieve
this minimization.

number of parameters available to alter

n sample size

kse estimates of the parameters being altered
F value of the function to be minimized
X array of ordered Pareto variates

c = shape parameter

zi array of Pareto cdf points
op positive differences betueen the EDF and cdf
DM negative differences between the EOF and cdf
pPLUS maximum positive difference
DMINUS maximum negative difference
KST Maximum of DPLUS and DMINUS
Inputs: NPAR = number of parameters available to alter
n = sample size
kse = 1mtial :stimates (the blu estimates)
x = array of ordered Pareto variates
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9]

c = shape parameter

QO

value of the function at the final estimates
revised estimates of location;

these are the Kolmogorov minirum distance
estimates

o000

[e]

Calculations:
z(i)

1 - (1 + [x(1)-al/b)*s(-c)

DP(1) ABSL i/n - z(1) 1

OM(1) ABS[ z(i) - (i-1)/n ]

000 a00n0a060mn0n

0

#s* Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS, bKS,
1 aCvM, bCVM, aAD, bAD, nn, count, aZAb, bZ2AD, anda, esta,1cnt
1 ,andb,estb,icntb,andab,estaa,estbb,icntab
1 ,alCV,blCV,alKs,blkKS
1nteger NPAR,NSIG,MAXFN,IOPT,n,c,nn,count{(4,5,14),icnt,hh
1 ,icntb,icntab
real kse(1),H(1),6(1),W(3),F,x(18),ablu,bblu,afD,bAD
,B(18),D,Anc,Bnc,BB(18),aKS5,bKS, aCVM, bCVM, azAD, bzAD
,anda(500),esta(500),A01,andb(5080),esth(508), andab( 508)
,estaa(500),estt 0(500),alCV,blCV,alKS,blKS
,21(18),0P(18),0M(18),0PLUS, DMINUS,KST
double precision dseead
c +#+ Calculate the Pareto cdf value [zi(j)] at each point
tae and the differences betueen the EDF step function
c rae and the cdf points
do 10 j=i,n
z1(3i)
DP())
DM(3)
10 continue
c 4+ Select the maximum of the plus and minus differences
DPLUS = MAX(DP(1),DP(2),0P(3),DP(4),DP(5),DP(6),DP(7)
1 ,DP(8),DP(9),DP(18),DP(11),DP(12),DP(13),DP(14)
1 ,DP(15),DP(16),DP(17),DP(18))
DMINUS = MAX(DM(1),DM(Z),0M(3),DM(4),DM(5),DM(B) ,DM(7)
1 ,OM(8),DM(9),DM(10@),DM(11),0M(12),DM(13),DM(14)
1 ,DM(15),DM(16),0M(17),0M(18))
#++ Select the maximum Kolmogorov distance measure and
(3 2] set F equal to that distance. F becomes the
(X2} function which ZXMIN attempts to minimize by
L3 2] altering the values of the location parameter
KST = MAX(DPLUS,DMINUS)
F = KST
return
end

(3]

[ W Sy

[¢]

1-(1/7(¢1+{x{(j)-kse(1))/bblu))=sc
ABS(3/real(n) - z1(3))
ABS(z1(3) - (3-1)/real(n))

0000
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Subroutine KSBMD

Q=== mm = m e A e e e e
c Purpose: KSBMD generates the minimum distance estimates of
c scale based upon minimizing the
c Kolmogorov distance measure defined i1n subroutine
c KBDIS. This routine uses the blu estimates as the
c starting points for the estimate modafications.
Cmm === e — e m e
c Variables: NPAR = number of parameters altered by minimizing
c the Kolmogorov distance
X c NSIG = number of significant digits for convergence
. c MAXFN = maximum number of function evaluations
Q: c IOPT = options selector (see IMSL manual on ZXMIN)
~ c H, 6, ¥ = vectors defined 1n IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
}i c F = value of Kolmogorov distance at the final
f: c parameter estimates
t} c kse = Kolmogorov derived minimum distance estimates
Li c blKS = Kolmogorov minimum distance scale estimate
Ea c ablu = blu estimate of location
b c bblu = blu estimate of scale
b: c count = array of counters used to count the number of
- c’ valid estimate values found
rS, Cm m T T T T T T T T T T T S e S S S T T S T T T S S T T e e e - -
ﬁ} . c Inputs: NPAR = number of parameters altered while mimimizing
i \’ c NSIG = rumber of significant digits required
- c MAXFN = maximum number of function evaluations
Ry c I0OPT = options selector (see IMSL manual on ZXMIN)
ﬁﬂ c kse = 1mtial estimates for the minimization process
h c ablu = blu estimate of location
En c bblu = blu estimate of scale
= == m = mm e o e e ——————————
- c Outputs F = mimimum value of the function being minimized
i} c kse = revised estimate values
K- c blKS = revised MD escimate of scale [blKS = kse(1)]
b c H, G, W = vectors defined 1n IMSL manual on ZXMIN
k' c IER = error parameter (see IMSL manual on ZXMIN)
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##+#* Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, aK5, bKS,
aCVM, bCVM, aAD, bAD, nn, count, azAD,bZAD, anda, esta,1cnt

1 ,andb,estb,1cnth, andab, estaa,estbb,1cntab
,alCV,blCv,alKs,blKS

external KBDIS

integer NFAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),1cnt,hh
.1cnth,1entab

real kse(1l),H(1),6(1),W(3),F,x(18),ablu,bblu,afd,bAD
,B(18),0,Anc,Bnc,BB(18),aks,bKS, aCVM, bCVM, azAD, bZ2AD

- 1 ,anda(500),esta({500),AD1, andb(500),esth(500), andab( 500)
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0000

Variab

,estaa(500),estbb(500),alCV,biCV,alks,blkKS
,z1(18),5CVM,ACV(18),UW2

double precision dseed

+2# Enter the ZXMIN required constants

NPAR = 1
NSIG = 3
MAXFN = 500
IoPT = @

#a2% Initialize the kse values to the blu estimates

kse(1l) = bblu

sax Call ZXMIN to refine the kse values by minimizing

e the Kolmogorov distance (KST) computed in the

Yy subroutine KBDIS

call ZXMIN(KSDIS,NPAR,NSIG,MAXFN,IOPT,kse,H,6,F,W, IER)

t»» Relabel the refined estimates of location

blKS = kse(1)

s»» Increment the blKS counter

count(c,nn,14) = count(c,nn,14) + 1

return

end

Subroutine KBDIS(NPAR,kse,F)

e: KBDIS provides the function which 1s to be minimized
by ZXMIN for the Kolmogorov distance measure. The
scale parameter is altered to achieve
this minimization.

les: NPAR number of parameters available to alter
n sample size
kse estimates of the parameters being altered
F value of the function to be minimized
x array of ardered Pareto variates

c = shape parameter

z1 array of Pareto cdf points

pP positive differences betueen the EDF and cdf

DM negative differences betueen the EOF and cdf
pPLUS maxi1mum positive difference
DMINUS maximum negative difference
KST Maximum of DPLUS and DMINUS

NPAR mumber of parameters available to alter
n sample size

kse = initial estimates (the blu estimates)

X array of ordered Pareto variates
c shape parameter
s F value of the function at the final estimates

kse = revised estimates of scale;
these are the Kolmogorov minimum distance
estimates




Calculations:
z(1)

1 - (1 + [x(1)-al/b)ex(-c)

ABSL i/n - z(1) ]

1]

DM(i)

[

[o]

[}

c oP(1)
c

c ABSL z(i) - (1-1)/n ]
[

3]

#s# Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS, bKS,
1 aCVM, bCVM, aAD, bAD, nn, count, aZAD,b2AD, anda, esta,icnt
1 ,andb,estb,icnth,andab,estaa,estbb,icntab
1 ,alCVv,blCV, alKsS,blkKS
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),icnt,hh
1 ,1cntb,icntab
real kse(i?,H(1),6(1),W(3),F,x(18),ablu,bblu,afD,bAD
,B(18),D,Anc,Bnc,BB(18),aKsS,bKS, aCVM, bCYM, aZ2AD, b2A0
,anda{500),esta(500),AD]1, andb(500),esth(500), andab(500)
,estaa(500),estbh(500),alCV,biCV,alkKsS,bl1KS
,21(18),0P(18),0DM(18),0PLUS, DMINUS,KST
double precision dseed
c #2#+ Calculate the Pareto cdf value [zi(j)] at each point
c 'Y and the differences betuween the EDF step function
c Ty and the cdf points
do 18 j=1,n
zi(j)
DP(j)
DM( ;)
1@ continue
c #»# Select the maximum of the plus and minus differences
DPLUS = MAX(DP(1),DP(2),DP(3),DP(4),0P(5),DP(6),0P(7)
1 ,DP(8),0P(9),DP(10),D0P(11),DP(12),DP(13),DP(14)
1 ,OP(15),DP(16},0P(17),DP(18))
DMINUS = MAX(DM(1),DM(2),DM(3),DM(4),0M(5),DM(B), DM 7)
1 ,DM(8),DM(3),0M(10),DM(11),0M(12),DM(13),DM(14)
,OM(15),0M(16) ,DM(17),0M(18))
##& Select the maximum Kolmogorov distance measure and
13 2 set F equal to that distance. F becomes the
s function which ZXMIN attempts to minimize by
e altering the values of the location parameter
KST = MAX{DPLUS,DMINUS)
F = KST
return
end

o]

P pas b

1-(1/7(1+(x{(j)-ablu)/¥se(1)))eec
ABS(j/real(n) - zi.j),
ABS(zi(j) - (j-1)/-eal(n))

0O o0 600
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